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A class of nonlinear space-time transformations is exhibited, which forms a nonlinear realization of the Poin­
care group. The transformations leave the expression I = x2 + J(x~/xO) invariant;J is an arbitrary function of 
the ratios x~ / xo. The infinitesimal generators are constructed as differential operators in the Minkowski 
space. The transformations are defined only in a restricted region 91 (the allowed region) of the Minkowski 
space. By introducing auxiliary variables, the transformations can be recast in their usual linear form; this, 
however, is in general possible only in a region £ (the linear region) which is different from 91. The region 
structure is analyzed in general and given explicitly for a special form of the function J. Among the physical 
ideas suggested by the nonlinear formalism is the notion of "relativity of coincidence." This expresses the fact 
that events coincident (or having arbitrary small Minkowski separation) in one frame of reference will not be 
coincident (or will have finite Minkowski separation) in a transformed frame. 

1. BACKGROUND AND MOTIVATION 

In some previous papers, a class of nonlinear space­
time transformations was constructed, which turned 
out to be realizations of the Lorentz group (Refs. 1 and 
2). These papers were quite preliminary and tentative 
in character, certain results were announced without 
proofs, ideas were suggested, but no organized deve­
lopment was presented. The present paper contains a 
systematic exposition (with proofs) of a class of non­
linear realizations of the POincare group and some 
suggestions concerning their relevance. 

Since both the formal development and the general 
goals were materially altered during the study, the 
following comments may help to place this investiga­
tion in its proper context. 

The initial purpose of this study was the introduction 
of intrinsic limitations (presumably of a quantum 
character) of space-time measurements in the theo­
retical structure. Many such attempts have been made 
(Halpern and Atkinson, Ref. 3, introduce a change in 
topology rather than in metric. See Ref. 1 for a very 
incomplete list of such efforts). The difficulty always 
is that the experiments neither demand nor exclude 
such modifications, while the resulting theories tend 
to become cumbersome and arbitrary. However, the 
results of high energy scattering do not give informa­
tion about small space-time regions (Ref. 4) in situa­
tions where enough energy is available to explore 
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such regions. The participating objects appear to 
fragment in various pieces (Ref. 5). The resulting 
picture is at least consistent with an intrinsic limit in 
the measurement of space-time regions. 

Another difficulty is that modifications of the space­
time structure in microscopiC domains would appear 
to demand a modification of the Poincare group, while 
it is yet required that for large space-time separa­
tions (note that even the notion of "large" is not really 
defined in the context of the Poincare group) the usual 
invariance and causality prinCiples are operative. 
The compatibility of the confinement of such modifi­
cations and the existence of an invariance group has 
been a perennial source of trouble. To investigate 
this point, a particular modification of Lorentz invari­
ance was suggested (Ref. 6). The basic invariant, 
which replaces x 2 , iS7 

I = x 2 + f(xi/xO). 

Here x 2 = (x O)2 - (x)2; the space-time coordinates 
are XII, 11 = 0,1,2, 3;xo = t is the time coordinate; 

(1) 

i = 1, 2, 3 denotes the space coordinates,) is a (so far) 
arbitrary function of the ratios xi/xo,which in some 
sense is supposed to express the limitations on the 
measurability of space time domains. It is not a 
priori obvious that the invariant (1) allows this inter­
pretation. It was shown, however, in Ref. 1 that the 
transformations leaving (1) invariant form a group. In 
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general (for arbitrary f) the transformations are not 
defined over all of Minkovski space X(X is the set 
- ctJ < Xll < + ctJ) but only in an allowed region 9(. The 
forbidden or excluded region 9i := X - W was interpre­
ted as a domain in which no space-time measurements 
could be carried out. The size of this domain was re­
lated to the limits of measurability. The relation be­
tween 9( and f was hinted at in previous studies, 8 but 
the precise connection is more intricate; it is given in 
this paper, Sec. 3. 

The group of transformations which leaves (1) invari­
ant is isomorphic to the homogeneous Lorentz group. 
Since the transformations are nonlinear, this is an 
example of a (nonlinear) realization9 of the Lorentz 
group by means of nonlinear transformations on a 
subset 9l of the Minkowski space X. Even though the 
original purpose was the study of possible modifica­
tions of local space-time structure and Lorentz in­
variance, the implE;mentation of this idea led to non­
linear realizations of the Lorentz group. It is in this 
sense that the emphasis of the investigation is shifted 
from the physical implications of modified invariance 
requirements to the physical significance of nonlinear 
realizations of Lorentz (or Poincare) invariant theo­
ries. (A deeper analysis might well show that these 
are in fact not unrelated). This reorientation in the 
direction of the physical aspects of the nonlinear re­
alizations is especially interesting since nonlinear 
realizations of internal symmetry groups have been 
particularly important in particle physics (Ref. 10). 

For example, the chiral group S U(2) <SI S U(2) does not 
possess a linear three-dimensional representation; 
it does possess a linear four- dimensional representa­
tion as well as a nonlinear three- dimensional realiza­
tion. This suggests a direct physical role for the 
three-dimensional nonlinear realization as the·trans­
formation law for the pion field (Ref. 11). It was noted 
by Meetz (Ref. 12) that the fundamental three-dimen­
sional nonlinear realization of the chiral group is the 
set of transformations which leaves the metric of a 
three- dimensional space of constant curvature invari­
ant. By combining these ideas, it is seen that in this 
case a direct physical significance can be attributed 
to a set of nonlinear transformations which are a (non­
linear) realization of a geometrical invariance group. 
Even though no such interpretation has as yet been 
given for the nonlinear realizations of the Lorentz 
group, the analogy is certainly suggestive. In spite of 
this observation, the role (if any) of the nonlinear re­
alization is still far from clear. One of the problems 
is that, to obtain an interesting (and testable) theory, 
a commitment has to be made regarding a physical 
interpretation of the nonlinear realizations. In order 
to obtain a sensible physical interpretation, on the 
other hand, the formalism must be developed suffi­
ciently to provide a framework which allows the con­
venient formulation of a variety of physical ideas. 
The formalism itself imposes restrictions on the 
physical interpretation. 

This paper is primarily devoted to the construction of 
a special class of nonlinear realization of the Lorentz 
and Poincare groups. The formalism developed can 
be handled rather easily and avoids the tedious mani­
pulations of previous papers. Although the development 
of the formalism is the main concern here, it will be 
clear throughout this paper that a specific physical 
interpretation must eventually be made. The con-
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side rations in this paper are all preparations to that 
end-several suggestio'1s and hints scattered through 
the paper all point in that direction. 

Section 2 contains the explicit form of the nonlinear 
transformations for both the Lorentz group and the 
Poincare group. The group property is demonstrated, 
the explicit form of the infinitesimal generators is 
given, and it is established that the commutation rules 
of the infinitesimal generators are those of the Poin­
care algebra. 

The region structure, their boundaries in particular, 
are analyzed in Sec. 3. The relationship between the 
nature off and the character of the region is obtained 
in that section. Two fairly simple choices for fare 
treated in some detail. 

The last section, 4, contains a number of disconnected 
comments, further results, and conjectures. Perhaps 
most important is the suggestion of the "relativity of 
coincidence, " which asserts that coincidence becomes 
a jvame-dependelll Iwlion, so that events occurring at 
the same space-time point in one system would not be 
coincident in a transformed system. This takes rather 
careful discussion, but it appears that the formalism 
allows (in fact demands) this somewhat curious IW{ iOIl. 

2. THE GROUP CHARACTER OF THE NONUNEAR 
TRANSFORMATIONS 

A. The Homogeneous Group 

The question to be discussed in this section is the 
existence and character of the transformations in the 
Minkowski space X, which leave I invariant, 

1= x 2 + f(xi/xO). (1) 

It is sometimes useful to introduce Q i (x) as 

Qi(X) =xi/xO• (2a) 

a thus represents a particular combination of the 
space-time coordinates. If an ordinary homogeneous 
Lorentz transformation A is carried out, CJii constructs 
the same combination of transformed quantities ac­
cording to 

Qi(Ax} = (Ax)i/(Ax)O. (2b) 

The function f is thus a function of the Q i variables; 
it will be assumed to be a real, bounded function of 
these variables. Although not strictly necessary, it 
will be assumed further that f depends only on the ab­
solute value of 

a = J[0(x)12• (2c) 

Certain regularity properties of f are also needed, 
but it is not necessary to assume that (is everywhere 
continuous. For physical applications, a form of j 
where the limits of f (a) as I a I -> 1 from above 
(Ial> 1) and below (Iai < 1) are different is particu­
larly interesting. Such functions are inCluded in the 
class considered. 
With these general stipulations for the function f, 
consider the transformations 13 Q(A): 

Q(A):.x'P = (Atx")R(xIA):= (Ax)PR(xIA), 

= 1 + ~ [U(Cl' Ix) - f(a (Ax))1 
x 2 

== 1 + x~ ~(~:)- f~~~:~~)l 

(3a) 

(3b) 
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The transformation Q(A) is formally similar to a 
scale transformation; the scaling factor R depends on 
both x and A as (3b) shows. It follows from the as­
sumed boundedness of j that R 2 ,as given by (3b), 
could be singular only on the light cone where x 2 = O. 
It is easy to show that if j possesses a finite deriva­
tive at Cl' = 1, the expression for R2 is finite on the 
light cone. In the more general case, that f(Ci) posses­
ses finite discontinuities at I Cl' I = 1 (with finite but 
different right and left derivatives at I Cl' I = 1),R2 is 
again finite on the light cone. Thus with the restric­
tions imposed on j the radical R is everywhere non­
singular. The transformations (3) form a group, which 
leaves I invariant. The proof of the invariance of I is 
straightforward. (3a) shows immediately that 

x'i/X'O = (Ax)i/(Ax)O. (4a) 

Constructing x'2 = g~vx' ~ x' v from (3a) gives 

Here (3b) and (4a) have been used. (4b) expresses the 
invariance of I. 

To show that the transformations Q form a group, it 
is only necessary to verify the group postulates;just 
the closure property needs some discussion. Let x~ 
be subjected to two successive transformations: Q(A 1) 
takes x~ -7 x'~, Q(A 2) takes x' ~ -7 x" ~. Then applica­
tion of (3a) yields 

x"~ = (A~uA~AxA)R(xIA1)R(x'IA2) (5) 

Substituting (3b) in the expressions for R and recog­
nizing that 

X"i/X"O = (A 2A1x)i/(A 2A1x)O (6) 

leads to the important relation 

R(x IA2A1) =R(x I A 1 )R(x' I A2). 

Combining (7) and (5) and using the properties of 
the Lorentz matrices gives 

Q(A 2 A 1 ) = Q(A2)Q(A 1)· 

(8) shows that the transformations Q(A) do indeed 
provide a realization of the Lorentz group. 

(7) 

(8) 

There is a standard procedure of constructing the in­
finitesimal generators of nonlinear coordinate trans­
formations. Let the transformations in an n dimen­
sional space Xl' •• xn be given by 

(9a) 

(A 1 .•• A,) are parameters of the transformation; then 
the infinitesimal generators are the operators 

MK = t(OFi) _0_, K = 1··· s. (9b) 
i ~1 OAK A~O oX i 

Applying this prescription to the transformation (3) 
yields after some calculation 

M = M(O) - (1/2x2)(Mo j)D 
IJI! J.1v Ill! 

(10) 

In (10) the M~~) are the usual infinitesimal generators 
of the homogeneous Lorentz group: 

M(O) = x _0 _ _ x _o_ 
Il" " OX~ " ox"' 

(l1a) 

D is the dilatation operator: 

D . a ° a = x'- +x -. 
axi oxo 

(l1b) 

The straightforward calculation of the commutators 
of MjJ" and Mpo shows that the commutation rules of 
the M v have the same structure as those of M ~~) , so 
that the Lie algebra of the operators M is the same 
as that of the MjJ~?) (the Lorentz generar~rs). 
The arguments just presented establish the group 
character of the transformations Q(A) [Eq. (3)]. It is, 
however, clear from the square root structure [in (3b)] 
that there may well be points x and transformations 
A such that R2(xIA) is negative. In that case,x'il is 
imaginary. Since the xiJ refer to space-time points 
(they are either directly observable as in classical 
theory or they label field operators), it is a reasonable 
requirement that they should be real. Consequently, 
the definition of the transformations must be restrict­
ed to those space-time points which will yield real 
images. Formulated more precisely, define W as that 
subset of Minkovski space such that R 2(X I A) is non­
negative for all A: 

={x~:R2(xIA) ~ 0 VA}. (12) 

The excluded or forbidden region is §i , which is that 
subset of X where R2(xIA) is negative for some A. 
The transformation Q is thus restricted to W ; it, 
however, needs to be shown that the restriction of Q 
to W does not destroy the group structure. In particu­
lar, it needs to be shown that if x E W. x' E W VA. 
To see this, consider Eq. (7). If x E W ,R (x I A 2A 1) and 
R (x I A 1) are both real for all A 1 and A 2' It follows 
from (7) that R(x' IA 2) is real for all Al and all A2. 
Since x' is the image of x under Q(A 1), it is seen that 
R(x' IA 2) is real for all A2, hence x' E W. It can be 
shown similarly that if x ranges over all of W, so does 
the image x'. 

It is possible to introduce auxiliary variables ~ I' so 
that the transformations Q (A) reassume their linear 
form. Define the transformation 14 U: x -7 ~: 

~I' = xl'~1 + j(Cl'(x))/X2. (13a) 

(13) is so designed that 

~2 = x 2 + j(Cl'(x)) = 1. (14) 

(13) can be easily inverted (U-1 takes ~ -7 x): 

xl' = ~~v'1 - j(Cl'(m/~2. (lOIJ) 

It can be establi5hea by direct calculation that if Q(A) 
takes X -7 x' the corresponding transformation from 
~ ---7 ~' is just the Lorentz transformation A. It should 
be noted that [in contrast to Q(A)] the transformation 
U can be singular. Further, the transformation U is 
defined in a subset .c of the Minkovski space (the 
"linearizable" region). As (13) shows 

.c = {x; 1 + f(Cl'(x»)/x 2 ~ O}. (15) 

The collection of real ~!l values obtained via (13a) 
will be called the set Z. In general this set does not 
contain all ~" values (- 00 < ~" < + (0). Z is the 
(real) image of X under U. The region structure will 
be discussed in more detail in Sec. 3. 

It is finally interesting to see that if A is a pure 
space rotation [so that (Ax)O = xO, Ar = r], the last 
two terms in R2[in (3b)] cancel, so that the trans­
formations Q become linear again. This is a common 
feature of the nonlinear realizations in particle 
physics; when restricted to a subgroup, the nonlinear 
realizations become linear again. 
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B. The Inhomogeneous Transformations 

It is also possible to construct a set of nonlinear 
transformations Q(A, a), which are related to the 
Poincare group in the same way that the transforma­
tions Q(A) are related to the Lorentz group. (a is a 
4-vector a~, characterizing a translation). The 
transformations Q(A, a) have the property that, as 
f -10, Q reduces to (A, a), while (A, 0) becomes Q(A) 
when 0 = o. Q is given by 

Q: X~ -1 X'~ = (S~xv)R(x IS), (16) 
with 

S~xv = A~xv + A(x)a~, (16 'a) 

A(x) =j x
2 

, (16'b) 
x2 + f 

R2(xIS) = 1 + J.. / Xi) __ 1_ /(SX)i). (16'c) 
x2 \~o (Sx)2 \(Sx) ° 

The basic result is that the transformations (15) with 
the definitions (16) form a group, leaving K(x, y) 
invariant: 

K(x,Y) = [xA-l(x)-yA-l(y)]2. (17) 

The proofs are given by verifying the group postulates 
- and by calculating K(X', y'). The derivation becomes 
a routine manipulation once it is recognized that 

A(X') = R(x IS)A(x), 

R(xIS 1 )R(x' IS2 ) = R(x IS2S1 ) 

[x' is defined by (15)]. 

(18a) 

(18b) 

For example,15 the invariance of K is shown by the 
following chain of equalities in which (18a) and (15) 
figure most prominently: 

K(x',Y') = [x'A-l(x') -y'A-l(y')]2 

= [(SX)A-l(X) - (Sy)A-1.(y)]2 

= {[A(x) + aAjA-l(x) - [A(y) + aA(y)jA-l(y)}2 

= K(x, y). (19) 

(18b) is particularly useful for establishing that two 
successive transformations, Q (AI 0 1) takes X -1 x', 
Q (A 20 2) takes X' -1 x", can be replaced by a single 
transformation from X -1 x", so that 

Q(A 2 A1 , A 2a 1 + O2) = Q(A2 a 2 )Q(A 1a 1 ). (20) 

This relationship Show" thQ.t the transformations (15) 
form a realization of the Poincare group. The basic 
identities (18) facilitate the manipulations involved; 
they themselves are obtained by substitution of the 
appropriate formula. 

The form of Q 1 shows that if A is picked as the 
identity Lorentz transformation, S does not reduce to 
a translation. The resulting transformation will be 
called a pseudotranslation T: 

Tx~ = x~ + o~A. (21) 

Since A depends on x [Eq. 16'b)], (21) is not just a 
translation; it represents a distortion of the space as 
well. The pseudotranslations form an Abelian sub­
group, as (20) shows. 

The infinitesimal generators can be obtained follow­
ing the method outlined in connection with the homo­
geneous group (9). The calculations get a little longer, 
but present no difficulty. In addition to the generators 
M~v [Eq. (10)], there are now the four generators of 
the pseudotranslations p~: 
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P = .!)A(X)_O_ + _1_ ~ n\ 
~ I " ax~ A2(X) OX~ J 

(22) 

The P~ are obviously distinct from (l/i) a/ax~. With 
the explicit operator forms of P~ and M~v' the various 
commutation relations may be Obtained by explicit 
calculation. This shows that the algebra of the gen­
erators M and P [of the transformations (15)] is 
precisely the Poincare algebra,16 so that the trans­
formations (15) are a nonlinear realization of the 
Poincare group. 

3. THE REGION STRUCTURE 

For the eventual physical utilization of the nonlinear 
realizations, a knowledge of the characteristics of the 
regions in which they are defined is essential. The 
linearizable region £, defined by (15), is obviously 
bounded by a surface B£, given by 

x 2 + f(O'(x)) = 1=0. (23) 

The boundary is invariant under the nonlinear (homo­
geneous) transformations; its precise nature depends 
on the character of f. If f is continuous and satisfies 

[1/(1 - a 2 )]f(a) < 0 Va, (24) 

the surface B£ is a closed surface enclosing the 
origin. (a is written frequently instead of a i.) To 
prove this statement, write (23) in terms of the a 
variables; this gives 

(xO)2 = f(a)/(l - a 2 ). (25) 

If the condition (24) is satisfied, (25) will yield two 
finite real roots for xO for each value of a. Since a 
fixed a corresponds to a ray through the origin in 
the Minkovski space (Xi = a iXO), this states that each 
ray through the origin intersects the surface B £, in 
two real points. This, together with continuity, 
implies that the surface is closed and encloses the 
origin .. The equation for B£ can be written in the 
suggestive form 

(XO)2 + (x)2 = - [(1 + a 2 )/(1 - a 2 )]!(a). (26) 

A. Boundaries 
The allowed region ~(was defined by (12); the deter­
mination of its boundary is a little less direct than 
that of £. Define the (real) numbers M and m by 

M = sup j(a(x)), (27a) 
.-2 > 0 

m = inf j(a(x)). 
?<o 

(27b) 

M and m are finite by virtue of the conditions imposed 
on f. If f is assumed to depend on just the absolute 
value of a, M and m are given by 

M = sup f(O'), (28a) 
I" 1<1 

m = inf f(O'). 
1,,1> 1 

The surfaces which form the boundary of ~( are 

(28b) 

x 2 + f(O'(x)) = 1'1'1, x 2 > 0, (29a) 

x 2 + f(O'(x» = m, x 2 < O. (29b) 

To derive this result, one observes first that the set 
of points defined by 

X2> 0, 

x 2 + f(O'(x» > M 

(30a) 

(30b) 
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all lie in ~, for consider the expression for R2(x I A) 
for such points, 

R2(xIA) = x-2{x2 + f(a(x» - f(a(A(x»} 

> x-2 {M - f(a(Ax»} > O. (31) 

The first inequality, in (31), follows from (30b) and the 
positive character of x2 ; the second inequality follows 
from the definition of M. Thus R2(xIA) > 0 for all 
points defined by (30); hence, they all lie in 9( • 

On the other hand, the points for which x 2 > 0 and 
x 2 + f(a(x» = M - E, E > 0, lie in ~. To see this, 
note that for such points 

R2(xIA) = x-2{M - E - f(a(A(x»)}. (32) 

As A runs through all Lorentz transformations A, 
a assumes all its values. so that there will be a 11.0 
for which j(a (A (x))) equals M. For this 11.0' R2(x 111.0) 
will be negative; hence x belongs to 91. The proof of 
(29b) proceeds in the identical manner. It is very in­
teresting to observe that if f is assumed to be con­
tinuous and the condition (24) is satisfied (Le., the 
boundary surface B£;, encloses the origin), the bounds 
m =M = O. This, in turn, means by (20) and (23) that 
the regions £ and 9( are identical. Consider for sim­
plicity the case where f depends on one variable a. 
Then (24) shows that 

f(a) <0 forlal<l, 

f(a) > 0 for la I> 1, 

(33a) 

(33b) 

If f is continuous, one must have /(1) = O. But now it 
follows from (28) that M = sUPIC(I<lf(a) = 0 and 

In =., inf I a I > 1 (a) = O. 

This result requires both the continuity of f and the 
condition (24). A semi-intuitive justification for (24) 
will emerge from a further consideration of the 
pseudotranslations. 

B. Pseudotranslations 

The pseudotranslations were defined by Q(I, T): 

x~~x'~=(Tx)~R(xIT), (34a) 
with 

(34b) 

R2(xl T) = 1 + x- 2f(a(x» - (Tx)-2j(a(Tx». (34c) 

The reality requirements restrict the translations to 
the region 

~11 ={x; R2(xl T) > 0 "IT}. (35) 

However, yet another condition has to be satisfied, for 
A (x) has also to be real to yield real translations. By 
(16b) this yields 

(36) 

(36) combined with (15) shows that a necessary con­
dition for a translation to exist is that x E' £; the point 
must lie in the "linearizable region." This is not 
sufficient, for (35) must be satisfied as well to guar­
antee the possibility of a real translation. Call the 
set where both (36) and (35) are satisfied 9(T; then 
the following important result can be obtained: Let1 7 

a and b be two points in ~(1" with an invariant distance 
K(a, b) given by (17); then there exists a unique 

pseudotranslation T(q), which takes a ~ ai, b ~ b', 
in such a way that 

K(b, a) = K(b', a'l = [(b'). (37) 

The first equality is obvious from (19); the second is 
the main result; [ is the one point invariant (1). 

Proof: Consider (34b) for a sequence of real 
values of q~; by assumption a and b will have real 
images under Q(I, T). Using (18a), one has for a 
general value of q 

al~A-1(a') = (a~+ q~A)R(aIT)[R-1(aIT)A-1(a)] 

= a~A-l(a) + q~. (38a) 

Since a~ is real and a E 9( T' A-1(a) is rea1. 18 Hence 
one can find a real number q~, such that 

- q~ = a~ A -1(a). (38b) 

Study the translation defined by q6 given by (38). It 
follows directly from (38a) and (38b) that for that 
translation a'~A -1(a' ) = 0, so that 

K(b l , a'l = [al~A -1(a ' ) - b'~A -1(b l )]2 

= (b ' )2 + j(bli/b 'O ). (39) 

This appears to prove (37). However, a certain 
amount of care must be exercised since the trans­
formation Q(I, qo) has certain singular features. 

Consider a sequence of numbers q~ which converges 
to - qg given by (38b). Then q~ defines a translation. 
Define further 

E~ =: a~ + q~A(a). (40) 

If q~ approaches qb = - a~ A -l(a), then En approaches 
zero. Conversely, a given E~ defines qn' USing a 
sequence of translations, parametrized by q~(or En)' 

yields a sequence of translated points, <~, starting 
from any given point x~. (The point x is distinct from 
a.) The explicit form for <~ can easily be written 
down USing (34), and the limit as En --; 0 can be taken. 
This will give the translated point for the particular 
pseudotrans1ation characterized by qg. The result is 

l' I~ _ I~ _ ~ ~ A(x) 
n :~ x" - x - x - a A((7) 

x r; + --.l f(a(x» - (x - aA(X») 2f (aT(x)). (41) VI x 2 A(a) 

The result is independent of the manner in which the 
limit E~ --; 0 (or q~ --; q~) is taken. If x does not lie on 
the light cone, this is a finite well-defined expression. 
Consequently, the pseudotrans1ation T(qo) translates 
every point in 9( T to a finite new, unambiguous point. 
If the same procedure is repeated for the point a 
itself, it is found that a~ [which is the point a trans­
lated by T(q n)] is again well defined and unambiguous. 
Taking the limit En ~ 0 or q~ --; q6 (or E~ ~ 0), re­
quires the evaluation of the quadruple limit 

a'~ = lim j_ (EP)2 f(Ei), 
.~~ ° 10 2 E° 

(42) 

(42') 

Inspection of this limit shows that it is not independ­
ent of the manner in which the limit is carried out. 
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For example, if the limit is performed keeping Ei/ EO 
= a i fixed and finite, the result is 

a'i = J- [(a i )2/(1 - a 2)lf(a) 

a'o = -,/- [1/(1 - a 2 )]J(a) 

(43a) 

(43b) 

[It might be noticed that the condition (24) imposed on 
/ guarantees that a,i and a'o are real.] 

On the other hand, the limit could be defined by stipu­
lating that a'(1) is defined by taking the limit E(l) --f 0 
first, keeping E(2), E(3), E(O) finite, while a,(2) is obtain­
ed by taking the limit E (2) --f 0, first, keeping E (1), E (3), 
E (0) finite, etc. With this definition of the limiting 
process, a'l1 = O. In any case a particular assignment 
of the limiting process has to be made; the trans­
formation formulas themselves do not define a'l1. 
The choice made is to define a'l1 as the limit obtained 
by letting EI1--f 0 first, keeping EV(V ,e. /1) finite. With 
this choice, the translation maps all points in III T' to 
finite points, a' is the new origin in the sense that 
K(b', a') = ](a'); the coordinates a'l1ofa' are (0, 0, 0, 0). 
This choice means that the region in which the trans­
formations are defined is the set I}l plus the point 
(0,0,0,0). 

O. Two Examples19 

These general considerations can be illustrated by 
the use of some examples. It is simplest to work in 

FIG. 1. The region structure for 
f = - (1 - (1'2)/(1 + (1'2). 

FIG. 2. The region structure for 
f = + (1 - ( 2 )/(1 + ( 2 ). 
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two dimensions (xO, x') = (I, x). Consider first 

/(a) = - (1 - 0 2)/(1 + 0 2 ) = - (12 - x 2)/(t 2 + x2). 
(44) 

This choice for / clearly satisfies (24);/ is also con­
tinuous. Examination of (44) shows that rn =M = O. 
Consequently, £ = Ill. 
The boundary of ~( is given by ] = 0, or 

] = (/2 - x2)[1 - 1/(12 + x2)] = O. (45) 

Thus the boundary curve is the unit circle with the 
light cone attached (see Fig. 1). The allowed region 
III is the outside 01. the unit circle plus the origin; the 
forbidden region ~( is its interior. The quantity A for 
this case becomes 

A = -'/1 - 1/(/2 + x 2). (46) 

Clearly, A is real for (x, t) outside the unit circle. 
Furthermore, R2(x IS) can be written using (44) and 
(16c) as 

R2(xIS) = 1 - 1/(/2 + x 2) + 1/[(S/)2 + (Sx)2]. (47) 

This form of R2 shows immediately that when 

t2 + x 2 > 1, R2(xIS) > 0 VS. (47 ') 

The expression (18b) can be used to show that if xlies 
outside the unit circle, so does x', for 

(18b) 

If x lies outside the unit circle,R2(xIS1 ) and 
R2(xIS 2S1 ) are, by (47a), both positive for all S1 and 
S2; hence R2(x' IS 2) is likewise positive for all x' and 
S2. Thus in this case the allowed region Ill, the 
linearizable region O£, the region where A is real, and 
the region I}l T (the region where translations are 
defined) are all the same; they are all the exterior of 
the unit circle. It is also simple to introduce the 
auxiliary variables ~ 11 defined by (13a). Specialized 
to the present case, the transformation formulas 
become (~O = T, ~' = ~) 

U: j /2 + x 2 - 1 
~ = x , U-l: 

12 + x 2 
j T2 + ~2 + 1 

x=~ , 
T2 + ~2 

j T2 + ~2 + 1 t = T • 
T2 + ~2 

j/2 + x2 - 1 
T = [ , 

[2 + x2 

(48) 

All points outside (the open region) the unit circle in 
X have a unique image in ~; the mapping is one to one 
with a unique inverse. However, the origin in ~ is 
excluded. If one considers as I}l all the points outside 
and including the unit circle (the closed region), (48) 
maps I}l into all of ~ including the origin: however, in 
that case, the whole unit circle maps into the origin; 
the mapping is not one to one; the inverse mapping is 
not unique. So either the mapping U from X --f ~ is 
not one to one, or ~ is a Minkovski space with the 
origin deleted. 

The apparently very similar case 

/(0) = (1 - a 2)/(1 + 0 2) = (12 - x 2 )/(/2 + x 2) (49) 
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can be discussed in the same way; the very different 
results are just recorded. The linearizable region £ 
is now all of X {I + [1/(t2 - x 2)][(t2 - x 2)/(t2 + x2)] 
is always positive}. The region I}( is bounded by the 
curves 

(t2 - x2)[1 + 1/(t2 + x2)] = ± 1 (50) 

(see Fig. 2). The boundary is not a closed curv~ 
surrounding the origin as was to be expected, SInce 
the condition (24) is not satisfied. 

4. FURTHER RESULTS, REMARKS 

A. The Relativity of Coincidence 

One of the interesting and unusual ideas which 
emerges from the nonlinear realizations (from the 
pseudotranslations in particular) deals with the coinci­
dence notion. In the first example of Sec. 3C, the set 
I}( is x 2 + [2 '" 1, to which is added the single point 
(x = 0, t = 0), or 

I}{ == {x, t; x == 0, t = 0 + (x2 + t2) '" I}. (51) 

The origin is surrounded by the unit circle x 2 + t2 
< 1 which does not belong to I}{. However, by the 
the~rem proven in Sec. 3, one can pick any point a in 
I}l as origin. What happens to the points in the neigh­
borhood of a and arbitrarily near a (in Euclidean or 
Minkowski sense) after the pseudotranslation has 
been carried out? To investigate this, consider, for f 
given by (44), the extremely simple case of two points 
a and b in I}( located on the x axis. It can easily be 
checked that, if a pseudotranslation is carried out 
with qO == 0, q' '" 0, points on the x axis are translated 
to points which lie on the real axis. Furthermore, the 
translation is everywhere defined. Thus the calcula­
tion to be presented will transform g to ~' which will 
be the new origin q' == (0,0). Written out in the case 
to be considered is the translation of the pOints 
a == (a O, a') = (0, a) and ll. == (b O, b') == (0, b). Since a 
and b lie in 91, a > 1, b > 1. However, the Euclidean 
distance dE (0, ti) == b - a can be arbitrarily small (or 
zero). The invariant distance is (17) 

K lia == - (-Jb 2 - 1 - -Ja 2 - 1)2. (52) 

Evidently, as b approaches ti, K5a can become arbit­
rarily small; if b » 1 and a » 1 

K /ia --; - [ dE (li, a) ]2, 

as would be expected. 

(53) 

If now a translation is made, KIXi must Iemain iEvari­
ant· however the Euclidean distance dE (b', a') == b' - a' 
sho~ld alwa;s remain larger than 1, for b' E l6, ii' is 
the origin, and I}{ contains apart from the origin only 
points outside the unit circle. To see how this comes 
about, start by finding the pseudotranslation taking q: 
to the origin. This, by (38b), is given by 

qbl) = - -Ja 2 - 1, (54a) 

qJO) == - o. (54b) 

This gives, using (34b), 

(Tob)' = bW + qSl)A(b) = b(1- ja
2 -1), (55a) 

b 2 - 1 

(T ob)' == b(1 - X), (55b) 

~ 0= J~: = ~ (55c) 

Since both a and b lie in I}(, X is real. 

The calculation of R2(bITo) according to (34c) yields 

R2(b I To) = 1 ~ b- 2 + b- 2 (1 - X)-2. (56) 

From (55) and (56) and (34a) the coordinates of ~' 
can be found as 

(b W )' = b(l - X) h - b- 2 + b-2 (1 ~ X)-2, 

(b<O»' = o. 

(57a) 

(57b) 

Since a is mapped in a' = (0,0), the Euclidean dis­
tance between q' and ~' is just 

dE(~', ~') = 1 + (b 2 - 1)(1 - X)2. (58) 

Since b> 1, (b 2 - 1)(1 ~ X)2 is always positive;hence 
dE(b', a') '" 1. The Euclidean distance in the trans­
formed frame is therefore always larger than 1, as 
required, no matter how close b and a are. The in­
variant distance should, of course, be the same as a 
calculation of K(b', a'), using (57a), verifies. The situ­
ation can perhaps be made clearer by considering a 
sequence of points bn on the real axis converging to a: 

Clearly, bo = b, while limn~oc btl = a. Under the 
pseudotranslation described, each bn maps into b;, 
which has a Euclidean distance from a', the origin 
given by 

(59) 

(dEW, a')) = ../1 + (b~ ~ 1)(1 - Xn)2, (60a) 

An = J(a2 - 1)/(b; - 1). (60b) 

In the limit as n --; 0Cl, we have bn --; a, Xn --; 1, so that 

lim dE(b', a') = 1. 
n----7oo n 

(60c) 

Hence, the limit of a sequence converging to a will in 
the new frame approach the unit circle around the 
origin. This demonstrates the result announced that 
events having an arbitrary small Euclidean or Minko­
vski separation (or coincident events) will appear 
with a finite Minkovski separation (or no longer coin­
cident) in a transformed frame. 

B. Remarks 

The following remarks may help to round out the dis­
cussion and point to a number of questions. 

(i) It was demonstrated in the first example of Sec. 3C 
that in the::: space the transformations Q assume 
their linear forms. Since there are simple connection 
formulas between the x and ~ variables, why should 
one not just work in the::: space and forget the X 
space? It was pointed out that the mapping from 
X --;::: is not one to one if the unit circle in X is 
included. If the unit circle in X is not included, the 
origin in ::: must be deleted. The crucial point is 
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really the physical significance which must be attri­
buted to the x and ~ variables. If the x variables in X 
are observable and if two distinct points on the unit 
circle X correspond to distinct physical situations, the 
mapping U from X ---7 E obliterates this distinction and 
the physical difference in question cannot be express­
ed in the E space. If, however, the x variables are not 
observable, or if no measurement can as a matter of 
principle reveal a physical difference between pOints 
on the unit circle, the mapping to E, which takes the 
unit circle to the origin, does not: destroy any physical 
distinctions. In fact, the transformation from X ---7 E 
then maps all physical indistinguishable points in X 
to a single point in E which is highly appropriate. 

Although phrased in terms of the first example, the 
remarks made are of more general validity. For, if 
one insists that the "physical points" in X shall be in 
~{ and shall allow translations as well, (36) shows that 
these points are necessarily in the region .c, so that 
the transformations can be recast in their linear 
form. If further f is continuous and (24) is satisfied, 
the situation is exactly as just described. The equi­
valence or lack of it depends then on the observability 
of the variables and the different restrictions this 
imposes. Consider, for example, the equation giving 
the eigenvalues of the total momentum operator in X: 

(61) 

This equation when transformed to the E space is just 

g~v_O __ 0_ u(O = -m2u(~) 
c~1I o~v 

(62) 

(m is a constant). 

The distinction in the X and E description now can 
enter through the different boundary conditions which 
can be imposed on equations. If this is done-for 
physical reasons-the X and E descriptions will not 
be mere transcriptions of each other. 

Of course, the formalism developed is much broader 
than that. If one does not require that all points shall 
be capable of translation, or if f is not continuous, 
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It is shown that in the exceptional case of a Lagrangian system, where the highest derivative of a generalized 
coordinate cannot be expressed in terms of the lower derivatives and the generalized momenta, the procedure 
to adopt in setting up the Hamiltonian formalism for the system (and consequently the quantization of the system) 
is to pass to an equivalent Lagrangian which does not have this defect and to use this rather than the original 
Lagrangian. 

1. INTRODUCTION 

In recent years intermittent contributions have 
appeared in the literature concerning the treatment 
of systems describable in terms of Lagrangians, 
which depend on time derivatives of the generalized 
coordinate(s) higher than the first. 1 As has been 
pOinted out in Ref. 2, some of these contributions­
those dealing with the setting up of the generalized 
Hamilton-Jacobi theory for such systems-suffer 
from the drawback that the authors apparently were 
not aware of the classic work of Ostrogradsky on this 
subject.3 This work shows that in all but one case it 
is possible to establish a unique consistent Hamilton­
ian formalism and, consequently, following the usual 
prescription, a unique quantum theory of such 
systems. 

Clearly the case when the Ostrogradsky approach 
appears to fail is of some interest, and not long ago 
a particular instance of this case was focussed on 
by Hayes. 4 The exceptional case in question is that 
which occurs when in setting up the Hamiltonian 
formalism one is unable to eliminate the highest 
derivative(s) of the generalized coordinate(s) in 
terms of lower derivatives and momenta. Hayes' 
solution to this difficulty is to eliminate the highest 
derivative using the equations of motion, but this is 
a highly questionable procedure since if it is applied 
equally to all terms, the Hamiltonian reduces to a 
quantity which is altogether independent of generaliz­
ed coordinates and momenta. Actually what Hayes' 
prescription amounts to in practice is the replace­
ment of a Hamiltonian of the form 

H(q, p) = (p2/2m) + V(q) (1. 1) 

by a Hamiltonian 

H(q, ql; p, PI) = (p2 /m) + (PI/Ill) + ~V(q) + ~V(ql), 
(1. 2) 

where the q I and PI are a new pair of canonically 
conjugate variables independent of q and p. Clearly, 
(1. 2) is a Hamiltonian which yields the same equa­
tions of motion for q as does (1. 1); but it is only one 
of an infinity of such and, besides, added degrees of 
freedom have been introduced which lead to degener­
acy when the system is quantized. 

Initially, this is a disquieting prospect since it re­
duces the traditional quantum mechanical results for 
systems such as the harmonic oscillator and the 
hydrogen atom to merely one of an infinity of possible 
results. However, on closer inspection, one learns 
that the difficulty of the exceptional Ostrogradsky 
case, on which all this ambiguity rests, is not a real 
difficulty at all. We shall show that the correct pro­
cedure in such cases is to change from the original 
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Lagrangian to an equivalent one which does not give 
rise to the exceptional case and then to use this 
Lagrangian for setting up the Hamiltonian formalism 
and the consequent quantization procedure. 

In Sec. 2 we summarize briefly the Ostrogradsky 
method and Hayes' instance of an exceptional case 
where the method breaks down. In Sec. 3 we show 
that in all instances of the exceptional case, one 
can define an alternative equivalent Lagrangian 
which does not give rise to this case and that using 
this Lagrangian the Hamiltonian formalism and 
the quantization procedure is unique. 

2. THE OSTROGRADSKY METHOD AND AN 
EXCEPTIONAL CASE 

For simplicity we consider first a system des­
cribed by one generalized coordinate x since the 
generalization of what follows to systems described 
by arbitrary numbers of generalized coordinates is 
quite straightforward, as we show briefly in the end. 
Given then a system described by a Lagrangian 

L = L(I, x, Dx, D2 x, . .. , Dnx), (2. 1) 

where D = d/dl, we obtain the Euler-Lagrange equa­
tion of motion 

aL d aL 
- -----
Ox dt a(Dx) 

d 2 aL 
+~---- ... 

dt 2 a(D2x ) 

+ (_)n
dli ~ 
din a(Dnx) 

= O. (2.2) 

In order to cast this equation in Hamiltonian form, we 
write 

qj = Vi-IX, Pi = 6L/6(Di X), i = 1, 2, ... ,n, (2.3) 

where 

6L == 6L_~~ +~ ~ _ .. , 
6y 6y dt a(Dy) dl 2 a(D2:v) 

and define 

H = PI q 2 + P2q3 + '" + P,,-lqn + PnDnx - L, (2.5) 

where H is supposed to be a function of t,qj,and p., 
the quantity Dnx being eliminated by use of the eq~a­
tion Pn = aLIa (Dnq). It then follows 3 that 

• dH 
q r = "'---p , o r 

(2.6) 

and so the equation of motion (2.2) has been expressed 
in Hamiltonian form. Quantization of the system can 
now be carried out in the usual way. 
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The exception to the above discussion occurs when 
Dnx cannot be eliminated using the equation Pn ::= 

a L/a(D"x). We illustrate this situation by reference 
to the example considered by Hayes. 4 Here the 
Lagrangian is given by 

L ::= -fimxD2 x - V(x), 

from which we obtain the equation of motion 

" + av 0 mx ax::=' 

(2. 7) 

(2.8) 

The quantities qi and Pi defined in Eq. (2. 3) are in this 
case 

q 1 ::= x, P2 ::= -fit/IX, 
(2.9) 

the Hamiltonian is 

(2. 10) 

and, as we see, we are unable to eliminate D 2 x in 
terms of the qj and Pi' It might be thought, that since 
due to (2.9), the terms in H involving D 2 x cancel out, 
one can simply omit these terms from 11. However, 
if one does this in a straightforward way, one easily 
verifies that the canonical equations do not agree 
with (2.8). What Hayes suggests is to drop the terms 
in D 2x and rewrite the remaining ones using the 
third and fourth of Eqs. (2.9) so as to yield 

fl ::= (Pr/1Il) + hnq~ + 1 V(ql) + ~V(-(2/m)p2)' (2.11) 

From this Hamiltonian one obtains canonical equa­
tions equivalent to (2.8). If we now make the canoni­
cal transformation - (2/m)p 2 = Q, fi mq2 = P, we 
see that Eq. (2. 11) is equivalent to the Hamiltonian 
form given in Eq. (1. 2). The shortcomings of such a 
Hamiltonian have been mentioned already. 

3. SOLUTION OF THE DIFFICULTY 

In order to circumvent the above type of difficulty, 
let us enquire into what exactly happens when one i-s 
unable to eliminate Dnx using the equation P" == 
aL/a(Dnx). Clearly in such cases the Lagrangian 
must be of the form 

L(t,x, Dx, ... ,Dn-lx, Dn x) == DnxF(t, x, Dx, ... ,Dn-lx) 

+ G(t, x, Dx, .•. , Dn-lx). (3. 1) 

Now when this happens, the Euler-Lagrange equation 
(2.2) is of order 2n - 2 at most. 

Proof: Only the last two terms on the left-hand 
side of (2.2) could give rise to terms of order 
higher than 2n - 2. Now for these two terms we 
obtain, using Eq. (3. 1), 

dr.-l a L dn iJ L (_)n-l __ + (_)Il __ _ 
dtrt-! iJ(D,,-lx) dtn &(Dnx) 

_ ( )Id d,d ( aL _dF) 
dt n-1 iJ(Dn- 1x) dt 

== (_1)n-1 __ Dnx + --dn - I ( aF ac 'OF 
dtn - I iJ(Dn-1x) a(Dn-Ix) at 

aF aF) 
- ax Dx - ... - a (D Il-I x) Dnx 
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== (_I)n-1__ _ __ ~Dx - ... dn-1 (aC aF 'F 
d/ fd a(Dn-1x) at ax 

_ aF Dn-l x) 
(Dn-2x ) 

and this is clearly of order 2n - 2 at most. 

This result raises the suspicion that the system 
under consideration may actually be describable in 
terms of a Lagrangian involving derivatives of x up 
to at most the (n -- 1 )th. This is indeed the case. 

Proof" Consider the quantity J defined by 

J(t, x, Dx, ... ,Dn-l x) 

j 1J n - I X , 
= dOl} (I, x, Dx, ... , Dn-2 x, 01). 

Obviously we have 

J
Dn-lx 

~~ == F(t, x, Dx, ... , Dn-2x, Dn-1x)Dn x + 

x d (aF(t, x, Dx, •.. , Dn-2x, 01) 
01 at 

+ E2 aF(t, x, Dx, ... , Dn-2x, 01»). 
,00 a(Dix) 

(3.2) 

(3.3) 

From this it follows that if we replace the Lagrang­
ian Lin Eq. (3. 1) by the Lagrangian L' given by 

L' == _ JDIl-IX(dOi ilF(t, x, Dx, at" Dn-2x, 01) 

+ ~ "x, ... , x, 01 + G, n-2 ilF(t x- [;\ - D'n-2 - ») 
i=O il(DiX) 

(3.4) 

we have obtained a new Lagrangian L~ which yields 
the same equation of motion as L but which contains 
derivatives of x up to at most the (n - 1)th. Note that 
if the foregOing replacement procedure is applied to 
the Lagrangian in Eq. (2. 7), we get the usual form 

L I = 1mi2 - V(x), 

which shows the uniqueness of this form within the 
context of the present discussion. 

The lesson of this result is that if L' does not give 
rise to the exceptional case, it should be used in 
place of L in setting up the Hamiltonian formalism. 
If L' also gives rise to the exceptional case, we can 
reduce still further to a Lagrangian L" with the 
(n - 2)th as the highest derivative and so on until we 
arrive at a nonexceptional case. There is of course 
the possibility that all the equivalent Lagrangians 
in this sequence continue to be exceptional until you 
have actually arrived at a Lagrangian depending on 
x alone without any of its derivatives; this is a singu­
lar case in which the equation of motion is simply an 
algebraiC equation and clearly no Hamiltonian formu­
lation of such an equation can exist. Hence, barring 
this Singular case, we now see how to construct the 
Hamiltonian and hence the quantum mechanical forma­
lism for all systems described by a Lagrangian of 
the form (2.1). 

Basically what goes wrong with the Hamiltonian 
formalism for a Lagrangian which gives rise to the 
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exceptional case, is a redundancy of generalized co­
ordinates and momenta. The Hamiltonian method out­
lined in Sec. 2 says equivalently that the value of x at 
any time 12 can be derived from a knowledge of 2n 
independent pieces of information about it at any other 
time t l • the 2n pieces of information being essentially 
the values of x and of its first 211 - 1 derivatives. 
Now in the exceptional case also, the Hamiltonian 
method naturally leads us to introduce the 2n quantities 
qi and Pi (i - 1, 2, ... ,n), but we do not need so many 
since now the Euler- Lagrange equation is only of 
order 2n - 2. It is this surfeit of generalized co­
ordinates and momenta which causes the trouble and 
it is equally the reduction of the problem to its pro­
per size (by changing from L to L' as above) which 
avoids it. 

In order to indicate how things go when we have more 
than one generalized coordinate, we briefly consider 
the case of a Lagrangian depending on two-general­
ized coordinates x and y and their first m and n time 
derivatives, respectively. The exceptional case we 
have been discussing now corresponds to a Lagrang­
ian of the form 

L == F(t, x, Dx, .•• , Dm-1x; y, Dy, ... ,D"y)Dmx 

+G(t,x, .•• ,nm-Ix;y,Dy, ••. ,D"y). (3.5) 

Clearly we can reduce this to an equivalent Lagrang­
ian involving derivatives of x up to at most the 
(w - 1 )th by adding to U the total derivative dK/ di 
with K given by 

j il m - 1 

K == - x daF(t, x, Dx, . ", Dm- 2x, a; y, Dy, ... , D":y). 
(3. 6) 

If this new Lagrangian is also exceptional with res­
pect to D m-l x, we reduce it still further and so on 
until we arrive at an unexceptional Lagrangian as far 
as x goes. We then do the same with y. The Singular 
case in which an unexceptional Lagrangian is obtain­
ed only when all the derivatives of x or of y have been 
eliminated can occur here too. In general, this case 
does not have a Hamiltonian formulation though in 
particular instances it does. Consider, for example, 
the Lagrangian 

L == ~mw (xy - yx) + ~mw2(x2 + )'2). 

The Euler-Lagrange equations are 

- y + WX = 0, 

x + w)' == O. 

• Permanent address. 

(3.7) 

(3.8) 

1 M. Borneas, Am. J. Phys. 27, 265 (1959); Nuovo Cimento 16,806 
(1960); J. Koestler and J. Smith, Am. J. Phys. 33, 140 (1965). 

2 J. Kruger and D. Callebaut, Am. J. Phys. 36, 557 (1968). 
3 M. Ostrogradsky, Mem. Acad. St.-Pet. 6,385 (1850). For a 

modern presentation see E. T. Whittaker, A Treatise on the 

Turning now to the Hamiltonian formalism we see 
that L is exceptional with respect to .t. We therefore 
pass to the equivalent Lagrangian L', 

L' == mwxy + imw 2(x 2 + y2). (3.9) 

This is what we have termed the singular case as far 
as x goes. The problem is that P", the momentum 
conjugate to x, is zero and hence x is not a canonical 
variable; it must then be eliminated. It so happens 
that this can be done because 

aL' 
p ==-=mwx 

Y as' (3. 10) 

and hence when we set up the Hamiltonian according 
to the usual rule 

H = py- L'. y 

Using (3.9) and (3. 10), we find 

H == (1/2m)p; + ~mw2y2. 

(3.11) 

(3. 12) 

The canonical equations derived from this equation 
are equivalent to the Euler-Lagrange equations (3.8). 
We stress, however, that this case is not typical and 
that generally what we have called Singular cases 
have no Hamiltonian formulation. Notice, by the way, 
that this example i& analogue in particle mechanics 
of the Lagrangian and Hamiltonian formalism for a 
Dirac field. 5 

In summary then, we have shown that the exceptional 
case which arises when the highest derivative in a 
Lagrangian cannot be expressed as a function of the 
lower derivatives and the generalized momenta can 
be handled in general by replacing the original 
Lagrangian by an equivalent one which does not have 
this difficulty. The use of the equivalent Lagrangian 
then allows the setting up in a unique way of the 
Hamiltonian formalism and hence of the quantization 
of the system. 
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The equations governing the collision of two plane gravitational waves are derived. The general exact solution 
representing this situation when both waves are linearly polarized are found, and some special solutions of pos­
sible physical interest are discussed in detail. 

1. INTRODUCTION 

A fundamental problem in gravitation theory is the 
collisional interaction of gravitational waves. The 
problem is interesting in that the nonlinear features 
of general relativity should show up explicitly in the 
failure of the superposition principle and the precise 
nature of the diffusion of independent gravitational 
fields through each other shoulq be susceptible to in­
vestigation. Apart from the possible guide to the 
quantization program which such an analysis could 
provide (this is, after all, the unquantized equivalent 
of the graviton-graviton interaction) it does appear 
particularly appropriate to investigate this problem 
at this time in view of the fact that gravitational 
waves are now on the brink of observational ex­
perience,! The interpretation of Weber's reported 
fluxes has rested almost entirely on the linearized 
approximation, and there are manifest difficulties in 
reconciling them with physically reasonable assump­
tions about the mechanism for generating them. 2 It 
is currently most popular to regard these waves as 
arising from the gravitational collapse of objects at 
the center of the galaxy, and there is some observa­
tional evidence for this.3 If the objects are distri­
buted randomly throughout the central region of the 
galaxy, and are "popping off" at the rate of about one 
a day, a typical wave will experience about 105 col­
lisions with other waves before emerging from the 
central region (assumed to be about 103 light years 
across). It is by no means evident that the cumula­
tive effect of such a large number of nonlinear inter­
actions will leave the emergent wave unscathed as 
regards the linearized approximation. Furthermore, 
if our galaxy is at all typical, other galaxies shoufd 
also be strong sources of gravitational waves, giving 
rise to very large numbers of collisions in the inter­
galactic space. An understanding of the space-time 
curvature resulting from the collision of gravitational 
waves is therefore of considerable importance to cos­
mology. 

The present study is restricted to colliding plane 
waves, which represent to some approximation the 
fields far from radiating sources. The results are 
in no instance to be regarded as holding without 
severe modifications for realistic waves having 
curved wavefronts. However, the nonlinearity is 
taken fully into account and the solutions discussed 
should certainly act as a guide to a corresponding 
discussion for more physically realistic situations. 

Exact solutions representing a collisi.on of two plane 
waves have recently been given by the author4 and 
independently by Kahn and Penrose 5, the latter having 
solved the problem with two impulsive waves. In this 
paper, I will give a more detailed derivation of these 
metrics. The field equations representing two arbit­
rary plane waves in collision will be established in 
Secs.2, 3, and 4, and will be solved first approxi­
mately by power series in Sec. 5, then exactly for the 
case of linearly polarized waves in Sec. 6. Finally in 
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Sec.7 there is a discussion of a physically more in­
teresting situation where the incoming waves each 
consist of a pair of impulse waves in close succession. 
Such waves have a finite energy flux and may be com­
pared with the bursts of radiation observed by Weber. 

2. GRAVITATIONAL PLANE WAVES 

In harmonic coordinates the metric of a plane wave 
is 6 

ds2 = - Udu2 + 2dud1' - (dx2 + dy2), (2.1) 
where 

U = f(u)(x2 - y2) + 2g(u)xy. (2.2) 

The plane wave is said to have constant polarization 
if g(u) vanishes. By performing a suitable coordinate 
transformation, the metric may be put in the Rosen 
form 7 

ds2 = 2e-Mdudv-giixidxj, (2.3) 
where 

M = M(u), gij = g ij(u), i = 2, 3. 

The condition for constant polarization is equivalent 
to the condition that gij be diagonalizable by a linear 
transformation on the xi. 

For the problem of two colliding waves the Rosen 
coordinate system has the following immediate ad­
vantages over the harmonic coordinates: 

(i) Both u and v are null coordinates, so that both 
waves may be simultaneously represented in the 
same coordinate patch. 

(il) In harmonic coordinates the Riemann tensor 
components are functions of flu) and g(u) not involv­
ing their derivatives. Hence sandwich waves involv­
ing discontinuities of the curvature tensor cannot be 
represented in these coordinates if one insists on the 
generally accepted Lichnerowicz conditions 8 (con­
tinuity in the metric and its first derivatives). In 
Rosen's coordinates such discontinuities may be 
represented since the Riemann tensor involves second 
derivatives of gij' 

(iii) Plane waves have in general a five-parameter 
group of symmetries. There is a two-parameter 
Abelian subgroup of symmetries acting like planar 
translations in the spacelike 2-surfaces u = const, 
v == const. These symmetries, which will be seen to 
be preserved by the interaction, are evident at once 
from the Rosen form, but not from the harmonic co­
ordinates, by the independence of g,:.u on Xi in (2.3). 

It is worth noting, however, that in general it is not 
possible to cover a plane sandwich wave with a single 
coordinate patch of the form (2.3), as coordinate sin­
gularities will invariably appear. 9 This property is of 
considerable geometrical interest as it is related to a 
curious and important focussing property of plane 
waves10 which has a Significant bearing on the develop­
ment of Singularities in the collision problem. 

In order to discuss the collision problem, consider the 
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space-time pictured in Fig. 1. u and v are null co­
ordinates 

and xl and x 2 are spacelike coordinates. In region I 
(v < 0, u < 0) the space-time is flat Minkowski space. 

ds 2 := 2dudv - 2oijdxidxj • 

In region II (v < 0, U > 0) it is a plane wave with met­
ric of the form (2.3), while in region III (v > 0, U < 0) 
it is again a plane wave of form (2.3) but with M = 
M(v) and gij = gij(V). The junction across the I-II and 
I-III boundaries must be smooth in the sense of Lich­
nerowicz. The metric in the interaction zone IV is 
determined by a characteristic initial value problem 
with data specified on the pair of null hypersurfaces 
u:= 0, V:= ° intersecting inaspacelike2-surface. 
According to a theorem of Penrose,l1 if this data is 
well set, the Einstein field equations will uniquely 
determine the geometry in IV. 

3. THE COORDINATE SYSTEM 

Figure 1 represents a "head-on" collision of two plane 
waves when viewed by any geodesic timelike observer 
with world line x 2 := const, x 3 := const, U := kv, k > 0. 
Other time like observers will see the two wavefronts 
approaching each other not head-on but at an angle; 
hence this more general situation is also taken care 
of by the present considerations. From an intuitive 
point of view it is clear that since the incoming waves 
have no dependence on the coordinates Xi, the metric 
in the interaction zone IV should also show no explicit 
dependence on these coordinates. The validity of such 
an assumption will follow from its ultimate success in 
determining the metric in the interaction zone and 
Penrose's theorem. 

We assume then that throughout the space-time there 
exist a pair of commuting spacelike Killing vectors 
~i, ~i, 

Under these conditions it is a straightforward matter 
to show that there exists a coordinate system XII, J1 := 

0, 1,2,3, such that 

~i := 0i, ~2:= oj 

andgllu = ~u(XO,Xl). Furthermore, at each point of 
the manifold there exist just two null directions 
orthogonal to the 2-space spanned by ~l and ~2. Let 
III and nil be null vectors in these two directions 
chosen such that llln il := 1. III and n~ are determined 
up to a scaling factor, and they are clearly both of the 
form (A,B, 0, 0) in our coordinates. Since g;,u := g;,u 
(xO, xl), it is possible to choose the scaling factor 
such that A := A(xO, xl) and B := B (xO, xl), whence it 
follows that there exist integrating factors 1/1 (xO, xl), 
cp(xO, Xl) such that 

(3.1) 

where 
cfJ\/; = u. llv."gll" (3.2) 

Hence u and v may be taken as the remaining co­
ordinates 

X 0 := U, Xl = v. 

Let mil be a complex null vector spanned by ~i and 
~i, satisfying 

mllmll = 0, mPmp = 1. 

lll, nil, mil, and mil constitute a null tetrad, 

(3.3) 

whose components in these coordinates may be set to 
be 

ill = (tJ;-1, 0, 0, 0), 111:= (0, cp, y2, y3), 

nil := (0, cp-l, 0, 0), n~:= (tJ;, 0, X2, X3), (3.4) 

mil = (0, 0, ~2, ~3), 
where 

xi:= Xi(U, v), yi = yi(U, v), ~i = ~ i(U, v). 

The following tetrad and coordinate freedoms remain: 

(1) Scale transformations: 

nW = A-ln, A = A(u, v). (3.5) 

The scale functions tJ; and cp transform as follows 
under such a transformation 

cp' := Acp. 

(2) SPatial rotations: 

C := C(u, v). 

The ~i transform as follows 

(3) Relabeling of null hypersurfaces: 

U' := f(u), v' = g(v). 

This induces a transformation of tJ; and cp 

FIG. 1. Colliding plane waves. u = const, v = const are 
null hypersurfaces. In region I the metric is Minkowski 
space. Regions II and m represent incoming plane waves 
which interact in region IV. A singularity eventually 
develops along the boundary represented by the jagged 
line. 

(3.6) 

(3.7) 
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1/1' == 1/1 df , 
du 

cp', == cp dg. 
dv 

(4) SPatial coordinate trmlsformations: 

u' == u, v' == U, Xi' = Xi + Ji(u, u). 

These induce transformations 

. . ati 
Y" == Y' + cp­

au ' 

(5) Linear coordinate transformations: 

x if == ai .xj aiJ' == consts. 
J ' 

4. FIELD EQUATIONS 

(3.8) 

(3.9) 

It will be convenient to express the field equations in 
terms of the Newman-Penrose spin coefficients,12 
defined as 

11 = - nll;vmJ.l!V, 

p = lll',vmllmv, ;\. = - nil;vmllmV, 

a = lil ; mil m v, Il = - n~;vrriYmv, 

T = 1J.l;vmllnv, v = - nJ.l:vmlJnV 

E = t (lil;vnil!V - mil;vmIl1V), 

Q = t (l1J;vnlJfflv - mlJ;vffllJfflV), 

f3 = t(llJ:vnllmv - mil;vrnilmv), 

" = t (l1J;vnlJnV - mlJ;VmilnV), 

and Weyl tensor components 

-v ° = - Ca 13 yb lamS 1Ymo, 

-V = - C a l rx n13 1Ymo 1 a"y6 , 

-V = - tc (lan6Fn b + 1rxnSm Yiii 6), 2 rxeyb 

>¥3 = - CrxByonrxlBnYm6, 

>¥ 4 = - CrxByoucxfiiB nY mO. 

In our case it is clear that all spin coefficients are 
functions of u and u alone, and hence the differential 
operators D == 1IJa/aX)l, /)" == nJ.la/axJ.l, 0 := mJ.la/axll re­
duce simply to 

D - a = cp-, 
au 

when applied to spin coefficients. 

The commutation relations [NP(4. 4)] give at once 

K:=; V = 0, p = p, )l = jl, 

and 
DI/I == - (E + 'E)I/I, 

/)"q; = (y + y)q;, 

f3 = ii, T = 1f = 2(11 

(4.1) 

(4.2) 

(4.4) 

(4.5) 

Before writing down the field equations, it is con-
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venient to introduce modified "scale-invariant" spin 
coefficients: 

pO = pq;-l, Il o = 1l1/l- 1 , 

aO = acp-l, ;\.0 = ;\.1/1-1 

EO = i(E - E)q;-l, GO == i(y _,,)1/1-1, 

yOi = yicp-l, X Oi = Xi!J;-1 

>T.O = >T'Offl-2, >T.O >T. -1 ° -1 -1 
'i' -'i' 'f' 'l'1='I'1CP, >¥2=-V2CP 1/1 , 

All these quantities as well as (11, ~i, and the product 
cpl/l are all invariant under scale transformations (3. 5). 
Equations (4.1) and (4.2) may be written 

E +€ 0::: - cp(logl/l).v, 

'Y + y = l/I(logq;).". 

Thus the real parts of E and 'Y cannot be made scale­
invariant. On the other hand, these real parts never 
make an explicit appearance in the remaining com­
mutation relations and field equations when written in 
terms of scale-invariant spin coefficients; hence these 
two equations are of no consequence and may be re­
garded as merely expressing E + E and 'Y + y in 
terms of cp and 1/1. 
Equation (4.3) can be rewritten in terms of scale­
invariant expressions 

yOi _ XOi = _ 4e-M(o~i + Q~i), 
,u ,v (4.6) 

where 

M = log( cpl/l). (4.7) 

This equation tells us that (11 = 0 is a necessary and 
sufficient condition for there to exist a spatial co­
ordinate transformation (3.8) which makes Xi and yi 
simultaneously zero. Finally, the remaining com­
mutation relations (4,4), (4.5) and the field equations 
NP(4.2a)-(4.2r) reduce to the following set of equa­
tions: 

pO.v = (pO)2 - pOM,v + aOao, 

pO." == _ 2)l0pO - 4e-M(1Ia 

!J.0,v = 2p oll0 + 4e-M (1I(Y, 

!J. 0 ,,, = - (!J.0)2 - )l0M,,, - ;\.0;;;:0, 

aO == ,,0(2po _ M + 2iEo) + -Va 
.v ,v 0' 

aO ,u = (2iGO - !J.0)aO - ;>;:0po - 4e-MQ'2, 

;\.0 ,v = ;\.O(pO _ 2iEO) + (j0!J.0 + 4e-M(1I2, 

AD 
,u = - A ° (2!J.° + M,u + 2iCo) - -v~, 

(11 ,v = (1I(3pO - iEO) + (jON, 

(11 ,u = - a(3!J.0 + iGO) -- AOo, 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4. 17) 

(4. 18) 

(4.19) 
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\{10 = 2poiY 2G'uO, 1 -

\{Ig = IPpO - ,\DUO, 

\{I~ = 21.J9G' - 2a,\D. 

(4.21) 

(4.22) 

(4.23) 

Equations (4.8)-(4.23) are all entirely in terms of 
scale-invariant spin coefficients; thus the scale trans­
formation freedom (3.5) has effectively been eli­
minated. 

Returning to Fig. 1, we have flat space in region I; 
hence G' = 0 there. From Eqs. (4.18) and (4.19) and 
the uniqueness theorem of ordinary differential equa­
tions it follows that G' must vanish in regions II and 
III. Applying the uniqueness theorem again in IV 
gives that G' vanishes throughout the space-time 
(N.B.: the integrability conditions for (4.18) and 
(4.19) are satisfied automatically as a consequence 
of the other field equations). Hence, if yi and Xi can 
be simultaneously transformed away by a transforma­
tion (3.8) in region I, it is a consequence of the field 
equations that they can be transformed away every­
where. 

Assuming this to be done, we have that the metric is, 
by (3.3), (3.4), and (4: 7), 

ds2 = 2e-M dudv + gijdxidxj , 
where 

gij == _ (~i(j + Nj). 

Writing gijdxidx j in the form 

- e-U(e V coshW(dx2)2 

+ e- v coshW(dx3)2 - 2 sinhWdx2dx3), 
where 

U = - log(detgi ), 

we have 

~2 = e(U-V)/2~i coshWeifl 

~2 = e(u+v)/2,ji coshWei'l', 
where 

coste - cp) = tanhW. 

By means of a spatial rotation (3.6) it is clearly pos­
sible to achieve that e = ~ 1T - cp = ~ sin-1(tanhW). 
From (4.8) and (4.9) all remaining spin coefficients 
may be expressed in terms of the functions U, V, W: 

pO = 1 uv , JlO = - t Uu' 

EO == - ~ Vv sinhW, GO == ~ Vu sinhW, 

uO == iiWv - i Vv coshW, 

,\.0 = iiWu +~Vu coshW, 

where subscripts u, v refer to partial derivatives 
taken with respect to these variables and 2e has been 
chosen in the first or fourth quadrant. 

Equations (4.11), (4. 12) give 

Uuv - UuUv == eU (e-U)uv = 0; 
hence 

U = - log[j(u) + g(v)]. (4.24) 

A coordinate transformation (3.7) could be used to 
make j(u) = u and g(v) = v, but we refrain from doing 
this at this stage since it will turn out that in the 
case of colliding waves such a coordinate transforma­
tion becomes singular on the junction surfaces u = 0 
and v = O. 

Equations (4. 10), (4. 13), (4.20), (4. 15), and (4. 16) give 

2Vuv - UYv - UYu = - 2(VvWu + VuWv) tanhW, 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

while the components of the Weyl tensor are com­
puted from the remaining field equations 

\{Ig = - ~ [Vvv coshW + 2VvWv 

x sinhW - Vv(Uv - Mv) coshW] 

+ ii[Wvv - Wv(Uv - Mv) - Vv2 coshW sinhW], 

\{I~ = - t [V uu coshW + 2VuWu 
(4.30) 

x sinhW - Vu(Uu - Mu) coshW] 

- ii[Wuu - Wu(Uu - Mu) - V; coshW sinhW], 

\{I~ = i Muv - ~ i(VuWv - VvWu) coshW, 

.T,O _ .T,O = O. 
'¥1 - '¥3 

(4.31) 

(4.32) 

The task of solving Eqs. (4.25)-(4.29) is not as daunt­
ing as may appear at first sight, for it turns out that 
Eqs. (4. 28) and (4.29) are just the integrability condi­
tions for Eqs. (4. 25)-(4.28). More precisely, if V and 
W satisfy Eqs. (4.28) and (4.29), then, apart from the 
exceptional case where U, V and Ware functions of 
u or valone, Eqs. (4. 26)-(4. 28) are automatically 
satisfied for some function M. Thus we may concen­
trate on simply solving (4.28) and (4.29), obtaining M 
from (4.26) and (4.27) by simple integration. 

5. COLLIDING PLANE WAVES-APPROXIMATE 
::OLUTIONS 

Returning to the situation of Fig. 1 we have, through­
out the space-time, a metric of the form 

ds2 = 2e- Mdudv - e-U(e v coshW(dx2)2 

+ e- v coshW(dx3)2 - 2 sinhWdx2dx3), (5.1) 

where M and U are given by (4.7) and (4.24) and M, 
U, V and WsatisfyEqs.(4.25)-(4.29). 

In region I (Minkowski space-time) we may put 

j(u) = g(v) = ~ (Le., U = 0), M = V = W = o. 
In region II we have a plane u-wave, Le., 

g = ~, M = M(u), V = V(u), W = W(u), 

while in III there is a plane v-wave 

j=~, M = M(v), V = V(v), W= W(v). 
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From (4.30), (4.31), and (4.32) it follows that the 
Riemann tensor is of Petrov type N in both regions: 

\}I~ = \}I~(u) inII 
and 

The condition for constant polarization in either of 
these regions, W = 0 [gij diagonalizable by a linear 
coordinate transformatIOn (3.9)], is equivalent to the 
condition that \}I~ or \}Ig is real in II and Ill, respec­
tively. 

The Lichnerowicz conditions (continuity of the metric 
and its first derivatives) imply that at the I-II bound­
ary (u = 0, v < 0) 

f= L M = V = W = 1u = Mu = Vu = Wu = O. 

From Eq. (4. 26) it follows then that also 1uu = 0 at 
this boundary, and differentiating this equation with 
respect to u gives 1 uuu = O. On differentiating again, 
however, one finds 

f uuuu = - (V';u + W,z) 

and it is not necessary that V uu or Wuu vanish at the 

I-II boundary since \}I~ may have a discontinuity there. 
In fact, assuming power series solutions at u = 0 (al­
though this restriction is unnecessarily strong and 
may easily be weakened), we see that for u > 0 

1 = i + a l u4 + . ", 
V = b I u2 + 
W= C I u2 + 

M = d I u2 + 
where 

a l = - ~ (bi + ci) 
and 

A similar argument at the I-III boundary (v = 0, 
u < 0) gives 

g = i + a2 v 4 + ... , 
V = b2 v 2 + .. " 

W = C2 v 2 + "', 
M = d 2 v 2 + . ", 

\}Ig = - b2 + iC 2 + 
where 

a2 = - ~ (b~ + c~). 

In the interaction zone IV it is clear from the re­
quired continuity of U that 1(u) and g(v) will have just 
the same functional forms that they take in II and III, 
respectively. At the II-IV boundary we must have 
Vv = Wv = Mv = 0, while at the TIl-IV boundary Vu = 
Wu == Mu == 0 in order to comply with the Lich­
nerowicz conditions. If power series are assumed for 
all functions in IV, it is easy to compute the leading 
terms from Eqs. (4. 25)-(4. 29): 

V = b
1
u 2 + ... + b

2
v 2 + .. , 

- ~(clc2b2 + c;b 1 + a 2b1)u2v 4 
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- i (C I c2b I + CI 2b 2 + a I b2 )u4 v 2 + 
W = cl u2 + .. , + c 2v2 + ... 

+ i(b 2b 1C2 - a 2c l )u2v 4 

+ i (b I b2c I - a I c 2 )u4 v 2 + 
M = d 1u2 + ... + d 2v 2 + '" 

+ ~(CIC2 + bI b2 )u2V2 +. ", 
\}I g = - b 2 + ic 2 + 
\}I~ = - b i - iC I + 
\}I~ = [C I c 2 + b I b2 - 2i(b I c 2 - b2c l )]uv + "', 

o 0 
\}II = \}I3 = O. 

Further terms are easily calculated, but the basic 
structure of the interaction is already apparent, at 
least in the neighborhood of the collision plane u = 
v = O. In linear theory \}Ig and \}I~ would remain un­
changed in IV dprinciple of superposition) and there 
would be no \}I2 term. In the full nonlinear theory a 
\}I~ term quickly develops and the \}Ig and \}I~ become 
modified (higher terms in the expansion must be com­
puted to see this). 

However, in order to understand the collision process 
in greater detail, and in particular to discuss the 
nature of the solution at points far from u = v = 0, it 
will be necessary to obtain some exact solutions. 

6. COLLIDING PLANE WAVES-EXACT SOLUTIONS 

In order to obtain exact solutions, it is necessary to 
solve the pair of equations (4.28) and (4.29) for V 
and W. The remaining equations are then integrable 
for M. The situation is considerably simplified if it 
is assumed that both incoming waves are linearly 
polarized, Le., assume W = 0 in TI and III. W satis­
fies the hyperbolic differential equations (4.28), and 
in IV we have an initial characteristic value problem 
with W vanishing on the characteristics u = 0, v = O. 
It followS I3 that W must vanish throl).ghout the inter­
action zone IV. Another way of expressing this is to 
say that if gij can be simultaneously diagonalized in 
II and III, then it can be diagonalized throughout the 
space-time. There now remains just the single 
linear equation in V 

If a change of variables is made to 1 = f(u), g = g(v), 
this equation becomes 

L[V] = 2(f + g)Vjg + Vj + Vg = 0, 

an Euler-Darboux equation. 

(6.1) 

It is clear, however, from the considerations of the 
previous section that this coordinate transformation 
is Singular at u = 0 (f == ~), and at v = 0 (g = t), since 
u == O«(~ - j)1/4), V == O«(~ - g)1/4) at these surfaces. 
Nevertheless, we may still apply this coordinate 
transformation in the interiors of regions II, III, and 
IV separately. assuming that V ~ ± [6(t - 1}]1/2 at 
the I-II boundary, V;:,j ± [6(t - g)1!2 at the I-ill 
boundary, and 

V ~ 0 - j)1!2G(g) + 0 - g)1/2F(f) + HU;g) 

at the boundaries of IV, where F, G, and H are regular 
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functions. Once the equations are solved, we may re­
turn to variables u and v by a coordinate transforma­
tion in order to connect the different patches up in a 
smooth manner. If it is not required that w~ and wg 
have actual discontinuities at the I-II and I-III boun­
daries, respectively (or perhaps that they suffer 
something more drastic there, such as a I)-function 
discontinuity), one may assume f~ t - a 2u n in which 
case Eq. (4. 26) implies 

v ~ ± [8(1- 1/n)(~ - f)]1/2, 

Given V = V 1 (f) in II, V == V 2(g) in III, V(t ~) =-: 0, 
it is possible to solve (6.1) in region IV explicitly by 
Riemann's method. l3 , 14 A specific Riemann-Green 
function, satisfying 

L[R] == Rjg - (R/2(f + g),j - (R/2(f + g».g == 0, 

iS14 

R j -R/2(f+g)=0 atg=go, 

R g - R /2(f + g) = 0 at f = fo' 

R(fo,go) == 1 

(
f+g )1/2 ( (f-fo)(g-go)) 

R(f,gjfo,go) = P- 1/2 1 + 2 (f)(J. ) , 
fo +go +g 0 +go 

where P- 1/2 is the Legendre function of order -' t, 

P-1/2 (1 + 2z) 

= F(L t; 1; -z) 

= 1- (~)2z + (~)2z2_ (1'3'5)2 Z 3 + .... 
2'4 2'4'6 (6.2) 

In region IV (f < ~ ,g < ~) the solution of (6.1) is ob­
tained by integrating R L[V] - V L[R] over the rec­
tangle PNML of Fig. 2: 

V(fo,go) == (RV)M - J~R(f,g: fo,go)[Vj + V/2(f + g)]df 

- J~R(j,g:fo,go)[Vg + V/2(f + g)]dg, 

Le., 

VU;g) 

== _ (f + g)-ll2 [J 1/2 P _ (1 + 2(~ - f)(~ - g»):£ 
j 112 (~+~)(f+g) d~ 

x [,j~ + ~V W]d~+J1/2p_ (1 + 2(~ - f)(TJ - g) 
1 g 1/2," (1/ + ~ ) (f + g) 

x ~[~~ + 77V2 (17)]d77 ]. (6.3) 
d1/ 

If V( f) and V(g) are regular functions for f > - ~ , 
g > - ~, then in the region f + g > 0 the integrands 
are regular. ForP- 1/2 (1 + 2z) becomes singular only 
at z == - 1 which occurs at ~ == - g which is less than 
f, and 1] = - f which is less than g. To investigate the 
nature of the solution as f + g -') 0, we must know the 
behavior of P_1I2(1 + 2z) as z -~ <Xl. This cannot be 
obtained from the power series expansion (6.2) which 
converges only for I z 1< 1, but can be obtained from 
the Laplace integral formula 15 

P_l/2(z) =} J~dCP [z + (z2.- 1)1/2 COScp]l/2. (6.4) 

This can be written as 

m(z2 - 1t1/211-1K(m), 
where 

m = 2(22 - 1)1I2/[z + (z2 - 1)1/2] 

and K(m) is the standard elliptic integral having the 
asymptotic behavior 16 

lim [K(m) - 10g4 + ~ 10g(1- m)] = O. 
m-l 

Hence 

P_ 1I2 (1 + 22) = 11-1 [Z-1!210gz 

+ 4z- 1/2log2 + O(z-3/2 logz)] as z -') <Xl. (6.5) 

Thus from (6.3) we have that for t > f> - ~, t > 
g > - t , as f + g -') 0, 

V(f, g) == H(f, g) log(f + g), 

where H(f, g) is regular at f + g = O. Using U == 
- In(f + g) and Eqs. (4.25)-(4.32), we have that the 
behavior of M and -¥o's at f + g = 0 may be com­
puted: 

M ~ t (1 - H2) log(f + g), 

-¥g, -¥~ ~ - iH(I - H2)(f + g)-2, 

-¥~ ~ - i(l - H2)(f + g)-2. 

Thus f + g = 0 is a real curvature singularity of the 
space-time which cannot be eliminated by any co­
ordinated transformation. It is a curious fact that 
arbitrarily weak incoming waves must produce curva­
ture Singularities in the interaction zone, proving an 
earlier conjecture of the author. 4 

Although (6.3) is an explicit solution of (6.1) for 
arbitrary incoming wave functions V 1 U) and V 2(g), it 
is in general very difficult to perform the integra­
tions in (6.3). A specific solution which has been 
found more or less by trial and error, and which has 

..--___ --.-:(.::;O,'-!.t.:..<) __ L~ ___ -;M CH) 

P (f., g.) N 

0 (LO) 

/' 
~ 

.§" " 
0 

FIG. 2. The f-g picture. In coordinates u' = f(u), 
v' = g(v) the interaction zone IV is the region inside 
the triangle. The sloping line f + g = 0 is the singu­
lar boundary, while the sides g = ~ ,j =} are the ll­
IV and Ill-IV boundaries, respectively. Given V = 
Vo(j) on g = ~ and V = VI (g) on f = ~, V(j,g) may be 
obtained explicitly at any point P in IV by a suitable 
integration around the rectangle P NM L. 

f 

J. Math. Phys., Vol. 13, No.3, March 1972 



                                                                                                                                    

292 PETER SZEKERES 

the desired behavior at 1 == t and g == t described 
above, is 

(l1)1/2 (l )112 
V == k1 tanh- 1 2l ~ + k2 tanh- 1 1. ~ g . 

2 g. 2 1 (6.6) 

In region II we must have V == V 1 (f) == k1 tanh- 1 

(t - f)1/2, and in region III V = V 2 (g) = k2 tanh- 1 

(~ - g)1I2. The complete solution is expressed most 
compactly by putting 

p==-/!-j, 

w == -/~ + g, 
where 

q == -/~ - g, 

t = -/1 + g, 

1 == ~ - (au)n1B(U), 

r == /~ + j, 

(n; 2: 1) and B(x) is the Heaviside step function. 

Then 
V == kl tanh- 1Plw + k2 tanh- 1qlr, 

V l == kl tanh-1p, 
where 

k? == 8(1 - lin;) 

in order to comply with the junction conditions 
across the I-II and I-III boundaries. Integration of 
Eqs. (4.25) and (4.26) results in 

M == [1 - klk2 - ~(kl - k2)2] logt + ~ki logw 

+ {k~ logr + ~klk2 log(pq + rw). 

(i) Putting n 1 == n 2 == 4, kl == k2 = - f6 gives 

eM = (wr)3/2(pq + rw)3 t- 5 , 

1JI~ == .f6a2B(u)t-4r- 3(pq + rw)[1- (p - q)2 + 8pqrw], 

>JIg == .f6b2B(v)t-4w -3(pq + rw)[l- (p - q)2 + 8Pqrw], 

1JI~ == 2a2b2uvB(u)B(v)t-4r-lw-l[3(pq + rw)2 - 2pqrw], 

which is the earlier solution given by the author4 
representing two colliding shock waves. In region II, 
where v < 0, only 1JI~ is nonvanishing, and it becomes 
singular at u == a-l, where r == O. The behavior in 
region III is similar. 

(ii) Putting n 1 == n 2 == 2, kl == k2 == - 2 gives 

eM == nvt-3(pq + rw)2, 

1JI~ == a 2[w- 1 6(au) + 3B(u)t-4y-2wq(pq + rw)], 

IJtg == b2 [r-1 6(bv) + 3B(v)t-4u·-2rp(pq + rw)], 

1Jt~ = abB(u)B(v)r4r -1w -1[(pq + rw)2 -pqrwJ, 

which is the solution of Penrose and Kahn5 represent­
ing two colliding impulse waves. 1Jt~ and IJtg suffer a 
6-function discontinuity at (u == 0, v < 0) and (u < 0, 
v == 0), respectively. Both solutions have the singular 
behavior discussed above at 1 + g == 0, where t == O. 

It should be noted however that the exact solutions 
discussed in this section are still not the most 
general ones representing two linearly polarized 
waves in collision. It has been tacitly assumed that 
the polarization of the two waves match up in such a 
way that the metric may be simultaneously diagonal­
ized in regions I, ll, and Ill. In general, there will be 
a constant phase difference between the waves making 
it impossible to do this. 
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7. COLLIDING WAVEPACKETS OF FINITE ENERGY 

The solution (ii) above representing two colliding im­
pulse waves cannot be regarded as the limiting case 
of a physically realistic situation since the energy 
content of the incoming waves is apparently infinite. 
This is certainly true if the energy flux is calculated 
in the linearized approximation in region II by the 
Landau - Lif schitz pseudotensor 1 7 

et01 == ~ I rlJt~(u)duI2 
81TC 
c 5 

== -a2 B(u) 
81TC 

for IJtg = a6(u). Thus there is a constant energy flux 
continuing indefinitely after u == O. In the full non­
linear theory two possible definitions of gravitational 
energy flux have been given by Penrose 18 in terms of 
the focusing power of gravitational fields. One of 
these definitions leads again to an infinite energy flux 
while the other gives zero flux. In either case im­
pulse waves cannot be regarded as phYSically reason­
able solutions. Following a suggestion of Penrose, 5 

let us now assume that each incoming wave consists 
of a pair of equal and opposite impulse waves in suc­
cession (Fig. 3), 

(7.1) 

In this case both the linearized pseudotensor approxi­
mation and Penrose's definition give the same finite 
total energy per unit area 

In c4 
v2- a 2 uo, 

81TC 
the total time for this burst of energy being ,(2e-1uo' 

The exact solution having the curvature profile (7.1) 
is best found by putting 

F == e(V-U)/2, C == e(u+ V)/2, M = 0, 

FIG. 3. Incoming wave packets of finite energy. If each incoming 
wave consists of a pair of equal and opposite impulse waves in close 
succession at u = 0 and u = uo• v = 0 and v = vo, respectively, they 
will both have finite total energy flux. The interaction region IV 
again has a singular boundary. 
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so that in II 

ds 2 = 2dudv - F2dx2 - G2dy2. 

The field equations (4.26) and (4.31) read 

FlAP + FGuu = 0, 

w~ ::= - Fuu/F. 

By substituting (7.1) the solution of these equations 
is seen to be 

F = 1 - a 2uo(u - uo) - auo' 

G ::= 1 - a2uo(u - uo) + auo' 

Hence 

1 = FG - i = i - a 2 u 2 B(u) 

+ (u - uo)2a2(1 + a2uil)B(u - uo)' 

and U ::= - logU + ~) becomes singular at 1 ::= - ~ , 
where 

u = (1/a 2uo)(1 + a2ut; - auo) 

~ [uo/(auo)2] for auo « 1. 

The last approximation appears to be reasonable for 
bursts such as those reported by Weber hav~ a 
total flux ~ 6 X 109 ergs/cm2, and duration {2cuo ~ 
0.5 sec. For then, uo ~ 1010 cm, a ~ 5 x 10-25 cm-1, 
auo ~ 5 x 10-15 . If the event is occurring at the 
center of the galaxy, using the fact that a is inversely 
proportional to distance from the source, we see that 
the approximation would break down at distances 
::; 1, 500 km, where auo ~ 1. Thus for two sources 
which are very close to each other the waves will 
interfere in a highly nonlinear manner. 

The function V::= - 10gF/G when expressed in terms 
of 1 in region II is 

\ - 2 tanh-1(~ - 1)1/2 for ~ > f > ~ - a2u0
2 

VU) ::= ) _ 2 tanh-1[1 + (auo)-2(~ + 1)-112] 

(7.2) 

Assuming a similar form for the wave profile in III, 

w8 ::= b1i(v) - b1i(v - vol, 

we can calculate VU,g) in region IV from Eq. (6. 3). 

In region IV' (u < uO' v < vol where only the first 
pulses of the incoming waves have interacted the 
solution is exactly given by solution (ii) of Sec. 6. 
The most interesting feature of the solution in this 
region is that it is dominated by >JI 9 which jumps dis­
continuously across the boundaries u = 0, v = 0 from 
zero to a finite value 

>JIg = ab[1 + O(abuv)]. 

w~ and wg, however, remain small (assuming auo « 
1, bvo « 1), 

w~ ~ 3a2bv[1 + O(b2v2)], 

w8 ~ 3b 2au[1 + 0(a2u2)]. 

In the region v > v 0' u > Uo where both pulses have 
interacted, it is not possible to evaluate the integral 
(6.3) explicitly. However, by using the power series 
(6.2) and the asymptotic form (6.5) forP-1d1 + 22) 
and substituting (7.2) into (6.3), the following approxi­
mate results emerge, valid for auo' bvo <:::: O(E)« 1: 

w~ ::= - abh/12(f + g)-2auobvo[1 + O(E2)], 

w~ = a4u02bvo[3hl-3 - (j+g)-2(1 + 2h1- 1) + 0(E2)], 

w8 ::= b4v02auo[3h2 -3 - (j + g)-2(1 + 2h2 -1) + 0(E2)], 

where h1 and h2' 0 < hi < 1, are defined by 

and 
f + g = h12 + h22 - 1 + 0(E2) > o. 

Thus in the interaction zone w~ jumps back to small 
but nonvanishing values ~ O(abauobvo) ::= abO(E2). On 
the other hand w~ ::= a 20(E3), w8 ::= b20(E3) are smal­
ler by one order of magnitude in E, and the solution is 
dominated by the w9 term. The most impressive 
feature is that w9 shows no sign of dying off the fur­
ther one goes into the interaction zone. Indeed the 
tendency is to increase indefinitely as hI + h~ --> 1, 
which is just the singular behavior at 1 + g ::= 0 dis­
cussed in Sec. 6. It is, however, very unlikely that this 
singular behavior is characteristic of real gravita­
tional waves. It is almost certainly a feature due to 
the very high symmetry of plane waves and will be 
lost when curved wavefronts are considered. How­
ever, the possible presence of a small but persistent 
curvature in the wake of two colliding gravitational 
waves even when the wavefronts are curved is by no 
means ruled out. This could prove to be of some in­
terest in cosmology if, as seems likely on the basis of 
Weber's measurements, the galaxies are strong emit­
ters of gravitational waves which will be in constant 
collision with each other. 

Finally there is another aspect of the plane wa,ve solu­
tions which may carryover to some extent in the 
curved wavefront case. In the case of single impulse 
waves, solution (ii) of Sec. 6 shows that the amplitude 
of the u-pulse is aw- 1 which --> 00 as g --> - ~ , i.e., as 
v --> a- 1 • Thus the u-pulse is amplified by the v-pulse 
and eventually becomes singular, and the v-pulse is 
Similarly amplified by the u-pulse. For the double im­
pulse waves considered in this section, a detailed cal­
culation shows a similar behavior. To first approxi­
mation, neglecting finite non-6-function contributions. 

w~ ~ (~ + g)- 1I2a[1i(u) - 6(u·- uo)] 

~ h21a[6(u) - 6(u - uo)], 

w8 ~ h11b[6(v) - 6(v - vol]. 

Thus again the waves are amplified by a factor which 
becomes infinitely large as hi -7 0, i.e., u -7 (a 2uo)-1, 
v -7 (b 2v o)-1. The eventual singular behavior is just 
another aspect of Penrose's result10 that plane gravi­
tational waves act as a perfect astigmatic lens. It is 
certainly false for waves with curved fronts, but such 
waves may still act as imperfect lenses providing a 
certain degree of focussing and amplification for each 
other. In view of the distressingly high energy fluxes 
reported by Weber, it is not impossible to rule out the 
possibility that such amplification as this is occurring 
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to produce apparent fluxes which are considerably 
higher than would be expected on the basis of the 
linearized approximation. Clearly a better under-
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It is shown that the total number of walks, starting and ending at the same point and having the same number of 
steps, is the same for all polytype structures in the fcc, hcp series and in the zincblende, wurtzite series and is 
independent of the starting point. This result is proved by showing that the eigenvalues of a simple Hamiltonian 
are the same within the two series considered. A relation is found between random walks in the two series of 
structures that is useful in extending currently available tables of random walks for the zincblende structure. 

I. INTRODUCTION 

The study of random walks on lattices is of interest 
in itself and plays an important role in the statistical 
mechanics of solids. 1 Many problems concerned with 
the thermodynamics of crystals involve the summing 
of diagrams on lattices which can often be related to 
the diagrams in a simple random walk process (e.g., 
the study of the Ising model above the transition tem­
perature1). This paper is concerned with random 
walks on two of the simplest series of polytype struc­
tures. The simplest structures occur in the fcc, hcp 
series, where the close packed layers are arranged, 
ABCABC" 'in fcc, and ABABAB·· ·in hcp. An in­
finite number of other possibilities may be imagined 
-some with a repeating pattern and some without. 
All these possible structures belong to the fcc, hcp 
polytype series. A general discussion of polytype 
structures is given by Verma and Krishna 2 : "Poly­
typism may be defined, in general, as the ability of a 
substance to crystallize in a number of different 
modifications, in all of which two dimensions of the 
unit cell are the same while the third is a variable 
integral multiple of a common unit. The different 
polytypic modifications can be regarded as built up 
of layers of structure stacked parallel to each other 
at constant intervals along the variable dimension. 
The two unit-cell dimensions parallel to these layers 
are the same for all modifications. The third dimen­
sion depends on the stacking sequence, but is always 
an integral multiple of the layer spacing. Different 
manners of stacking these layers may result in struc­
tures having not only different morphologies but even 
different lattice types and space groups." As well as 
the fcc, hcp polytype series, we also discuss the zinc­
blende, wurtzite polytype series in this paper. Each 
structure in this series may be derived by placing 
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two atoms at each site in the fcc, hcp series to form 
two interpenetrating sublattices. Zincblende itself 
has zinc on one sublattice and sulphur on the other 
whilst diamond is an example of a crystal having 
only one type of atom and the zincblende structure. 

We write down a simple Hamiltonian, containing a 
single state at each site, that permits hopping between 
nearest neighbors only. The lth moment of the den­
sity of states formed from the eigenvalues of this 
Hamiltonian is just the number of ways of returning 
to a starting point from a walk of I steps. The the­
orem is proved by using a unitary transformation 
that shows that the density of states is identical for 
all structures within a polytype series. It is also 
shown that the number of returns is independent of the 
starting point. 

In Sec. VI, a connection is found between the density of 
states for the fcc, hcp series and the zincblende, wur­
tzite series. That such a connection exists is not 
surprising as each structure in the latter series may 
be derived from a structure in the former series. An 
integral expression for the density of states of the 
fcc and zincblende structures is used to derive a re­
lationship between the number of returns to a starting 
point for the two polytype series. Tables are given 
for the total number of returns for walks with up to 
nine steps in the fcc, hcp series and up to 18 steps in 
the zincblende, wurtzite series. 

II. THE HAMILTONIAN 

We define a Hamiltonian 

H = V 6 I <Pi) <<P3·1, (1) 
(ij) 

where Vis the overlap between states l<Pi) and I<pj} on 
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to produce apparent fluxes which are considerably 
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It is shown that the total number of walks, starting and ending at the same point and having the same number of 
steps, is the same for all polytype structures in the fcc, hcp series and in the zincblende, wurtzite series and is 
independent of the starting point. This result is proved by showing that the eigenvalues of a simple Hamiltonian 
are the same within the two series considered. A relation is found between random walks in the two series of 
structures that is useful in extending currently available tables of random walks for the zincblende structure. 

I. INTRODUCTION 

The study of random walks on lattices is of interest 
in itself and plays an important role in the statistical 
mechanics of solids. 1 Many problems concerned with 
the thermodynamics of crystals involve the summing 
of diagrams on lattices which can often be related to 
the diagrams in a simple random walk process (e.g., 
the study of the Ising model above the transition tem­
perature1). This paper is concerned with random 
walks on two of the simplest series of polytype struc­
tures. The simplest structures occur in the fcc, hcp 
series, where the close packed layers are arranged, 
ABCABC" 'in fcc, and ABABAB·· ·in hcp. An in­
finite number of other possibilities may be imagined 
-some with a repeating pattern and some without. 
All these possible structures belong to the fcc, hcp 
polytype series. A general discussion of polytype 
structures is given by Verma and Krishna 2 : "Poly­
typism may be defined, in general, as the ability of a 
substance to crystallize in a number of different 
modifications, in all of which two dimensions of the 
unit cell are the same while the third is a variable 
integral multiple of a common unit. The different 
polytypic modifications can be regarded as built up 
of layers of structure stacked parallel to each other 
at constant intervals along the variable dimension. 
The two unit-cell dimensions parallel to these layers 
are the same for all modifications. The third dimen­
sion depends on the stacking sequence, but is always 
an integral multiple of the layer spacing. Different 
manners of stacking these layers may result in struc­
tures having not only different morphologies but even 
different lattice types and space groups." As well as 
the fcc, hcp polytype series, we also discuss the zinc­
blende, wurtzite polytype series in this paper. Each 
structure in this series may be derived by placing 
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two atoms at each site in the fcc, hcp series to form 
two interpenetrating sublattices. Zincblende itself 
has zinc on one sublattice and sulphur on the other 
whilst diamond is an example of a crystal having 
only one type of atom and the zincblende structure. 

We write down a simple Hamiltonian, containing a 
single state at each site, that permits hopping between 
nearest neighbors only. The lth moment of the den­
sity of states formed from the eigenvalues of this 
Hamiltonian is just the number of ways of returning 
to a starting point from a walk of I steps. The the­
orem is proved by using a unitary transformation 
that shows that the density of states is identical for 
all structures within a polytype series. It is also 
shown that the number of returns is independent of the 
starting point. 

In Sec. VI, a connection is found between the density of 
states for the fcc, hcp series and the zincblende, wur­
tzite series. That such a connection exists is not 
surprising as each structure in the latter series may 
be derived from a structure in the former series. An 
integral expression for the density of states of the 
fcc and zincblende structures is used to derive a re­
lationship between the number of returns to a starting 
point for the two polytype series. Tables are given 
for the total number of returns for walks with up to 
nine steps in the fcc, hcp series and up to 18 steps in 
the zincblende, wurtzite series. 

II. THE HAMILTONIAN 

We define a Hamiltonian 

H = V 6 I <Pi) <<P3·1, (1) 
(ij) 

where Vis the overlap between states l<Pi) and I<pj} on 
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neighboring sites, the summation in (1) being restric­
ted so that nearest neighbor pairs are counted only 
once. The states are normalized so that 

All the structures considered in this paper may be 
regarded as having M planes stacked vertically, 
each plane containing N atoms. The density of states 
n (E) per atom for the Hamiltonian (1) is given by 

n (E) == - (l/nNM)Im ~ (¢i 11/(£ - H) I ¢i)' (2) 
i 

where the energy E has a small positive imaginary 
part. The lth moment of the density of states is 

(3) 

where rl is the number of returns to a given starting 
point in a walk of 1 steps; an average being taken 
over all possible starting points in the structure and 
the thermodynamic limit N ,M -7 rt:J taken to eliminate 
surface effects. In fact it is unnecessary to take an 
average in (3) as it is shown at the end of Sec. IV, 
that (¢i I Hli ¢i) is independent of i for all structures 
considered in this paper. For the moment, however, 
we are content with an average. From (3) we see 
that it is a necessary and sufficient condition that 
the density of states n(E) be independent of the stack­
ing sequence for the r l also to be independent of the 
stacking sequence and therefore identical for all the 
members of the polytype series. 

m. THE FCC,HCP POLYTYPE SEIDES 

This series consists of close packed layers, as 
shown in Fig. 1 ,stacked vertically in the z direction 
one on top of the other. There are three types of 
layers-A ,B, C all equivalent to within a horizontal 
displacement. The fcc sequence of layers is 
ABCABC ... and hcp is ABABAB' . '. Each close 
packed layer is a Bravais lattice and so it is useful 
to use Bloch's theorem to define states within each 
plane 

Ik,n) == (INN) ~ eik.iln-. ) 
't't,n ' 

(4) 
i 

where k is a two-dimensional vector parallel to the 
plane. We use an additional label n for each plane 
where 1 .s n .s M and the summation over i is only 
over the N states I ¢i) within the plane labeled by 
n. The origin of coordinates is chosen arbitrarily for 
the first plane and in a manner to be prescribed for 
subsequent planes. We see from (1) and (4) that 

(k,n IHlk,n) = V~eik.6 
6 

= 2 V(coskx a + 2 costkx a cost13kya) 

= CYk 
(5) 

where the summation over 0 is over the six nearest 
neighbors within the plane. It is important to note 
that CYk is real and that H only connects states with 
the same k vector in accordance with Bloch's theorem. 
(k is defined to be within the first Brillouin zone to 
give exactly N states for each plane;the possibility 
of two states differing by a reciprocal lattice vector 
is therefore discounted.) 

We now place the next layer on top of the first layer. 
Each atom in the first layer has three nearest neigh­
bors in the second. We choose the atom in the second 
plane that lies nearest to the origin in the first plane 
and is in the yz plane (see Fig. 1) as the origin for the 
second plane. This is a unique prescription and we 
obtain the following matrix elements between adjacent 
planes: 

(k,n I Hlk,n + I) 

= 1\ for cyclic sequence AB,BC, CA, 

= e: for anticyclic sequence BA, CB ,AC , 
where 

1\ = V(1 + 2 cos ~kxa expd{3\a). 

(6) 

(7) 

Because of the translation group perpendicular to the 
z axis, the Hamiltonian only connects states with the 
same k vector in adjacent planes. From Eqs. (5) and 
(6), we see that by using Bloch's theorem perpendi­
cular to the z axis, the Hamiltonian is split into N 
blocks each one being M x !VI and characterised by a 
k vector. We can consider the eigenvalues of each 
block separately. For hcp we have an ABABAB· .. 
stacking sequence and the structure of one of the 
blocks is 

a e 
e* C! e* 

e a e 
e* a 

e 
e* 
a e 
e* CY e* 

e 
I 
I 
I 
I 
I 
I' 
I 

(8) 

where the k label on n, e has been dropped and the 
only nonzero elements lie on and just above and below 
the diagonal. The layers are stacked alternatively 
cyclically, AB and anticyclically, BA and so we get a 
sequence e e * e e * e e * . .. above the diagonal. The 

fcc, hcp series 
y 

L. 

FIG. 1. The three possible stacking pOSitions 
for the fcc,hcp series. The X,y axes lie in 
the plane perpendicular to the stacking axis 
z. The distance between nearest neighbors in 
the plane is a a.nd the dista.nce between suc­
cessive layers is c = /f a. A polytype struc­
ture may be constructed from any sequence 
of the three layers A,B,and C provided only 
that the same layer does not occur twice in 
adjacent layers, e.g.,ABCBABC is allowed 
whereas ABBACBA is not. 
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eigenvalues of (8) are unaltered by any unitary trans­
formation. The row and column indicated by arrows 
in (8) are multiplied by ()/()* and ()*/(),respectively. 
The transformed matrix becomes 

- QI e 
8* QI e* 

() a ()* 

~ e QI e 
e* QI e 

B* a (J* 
() 

and the stacking sequence that leads to (9) is 
ABA CAB ... , i.e., the second B has been changed to 
C. It is clear, therefore, that we can have either B 
or C between two A's,A or B between two C's,or 

(9) 

C or A between two B's, and the Hamiltonian (1) will 
have the same eigenvalues. A little thought will con­
vince the reader that any desired sequence may be 
generated by this jJrocedure. For example, we can 
go from hcp to fcc in the following way: 

A B A B A B A B A B 
A B C B A BA B A B 
A B C B C BA BA B 
A B CAe BA B A B 

and it is not easy to see how it would generalize to 
all close packed structures. 

IV. THE ZINCBLENDE, WURTZITE POLYTYPB 
SERIES 

The zincblende, wurtzite series is rather more com­
plex than the fcc,hcp series and contains two kinds of 
atoms that may be called a and b. We define each 
atom in the fcc, hcp series to be of type a. A struc­
ture in the zincblende, wurtzite series can be formed 
from one in the fcc, hcp series by placing an atom of 
type b a distance ~c above each a type atom in the 
z direction (see Fig. 1). The structure now consists 
of two identical interpenetrating sublattices with 
each atom in one sublattice having four nearest 
neighbors in the other sublattice at the corners of a 
tetrahedron. 2,4 We may visualize this structure as 
consisting of puckered planes, stacked vertically and 
containing a type atoms from the (n + 1 )th layer ~ith 
b type atoms from the nth layer a distance ic below 
and displaced horizontally so that the nearest neighbor 
bonds form hexagonal chains. Z,4 Each atom has three 
nearest neighbors in this puckered plane and each a 
type atom has a nearest neighbor b in the plane above. 
The translational symmetry of the structure perpendi­
cular to the z axis can again be used to define a two­
dimensional k vector. We now have two kinds of states 
for the nth layer, /k, n , a) for sublattice a and Ik, n , b) 
for sublattice b. We thus have 

(k,n,aIHlk,n,b) =:: V (11) 

A B C A C B C BA B 
A B C A C A C BA B 

(10) for the vertical bonds and 

A B C A B A C BA B 
A B C A B A C B C B 
A B C A B A C A C B 
A B C A BABA C B 
A B C A B C B A C B 

It is clear that we are generating an fcc sequence. 
We are also generating a CBA for every ABC, and 
will therefore finish up with a structure half of which is 
ABCABCABC . " and the other half CBACBACBA' ... 
There will be an interface between these two sequ­
ences; however it will have negligible weight in the 
thermodynamic limit. We could generate hcp from 
fcc by reversing the above procedure used in (10). 

If we count a cyclic sequence AB, BC, CA as + 1 and 
an anticyclic sequence BA, CB,AC as -1, then the 
sum of all these numbers for a given structure may 
be called the cyclicity C of that structure and is con­
served under the unitary transformation described in 
this section. Thus the hcp structure with an odd num~ 
ber of layers has C =:;: 0, whereas the fcc structure has 
C = M - 1, where M is the number of layers. A struc­
ture with cyclicity - C can be formed from a struc­
ture with cyclicity +C by reflection in the xy plane. 
Therefore by inserting an appropriate small number 
of interfaces (one in the case of hcp to fcc), it is pos­
sible to generate any structure and the interfaces 
will have negligible weight in the thermodynamic 
limit. 

The equivalen~e of the number of returns in a random 
walk on the fcc and hcp lattices was first demonstra­
ted by C. Domb and M. F. Sykes. 3 Their approach in­
volves the detailed consideration of lattice diagrams 
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O<,n,bIHlk,n+ 1,a) 

= ~ for cyclic sequenceAB,BC,CA, (12) 

= e;for anti cyclic sequence BA, CB,AC, 

where ek is defined in (7) and the origin of coordinates 
in each a type layer is chosen in the way described in 
the previous section. If we start with the wurtzite 
structure which is derived from hcp and therefore 
stacked ABABAB • •• each of the N blocks of H char­
acterized by a two-dimensional k vector looks like 

1 1 
o V 
V 0 () 

e* 0 V 
V 0 ()* 

() 0 V 
V 0 () 

e* 0 V 
V 0 8* 

() 0 V 
V 0 () 

()* 0 V 
V 0 ()* 

() 1 
I 

-I 

(13) 

1 
I, 
1 
1 

where we have suppressed the k label on e and the 
basis states for the matrix are ordered' . 'Ik,n, a) 
/k,n,b) /k,n + l,a) Ik,n + l,b) .. ·• We perform 
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the unitary transformation in which the two rows in­
dicated are multiplied by e/e* and the two columns 
are multiplied by e* Ie. The sequence above the dia­
gonal becomes ve ve* ve* ve ve ve* which corresponds 
to ABACABA . ... This is the same change in sequenc­
ing that we achieved for the fcc, hcp series in the pre­
vious section and the argument, therefore, proceeds in 
an identical manner from this point to show that the 
density of states is the same for any desired sequence. 

As a footnote to the preceding two sections, it can be 
seen that the diagonal elements of HI are equal with­
in each of the M blocks in the Hamiltonian in either 
of the two polytype series, provided that end affects 
are neglected of course. This is because in the dia­
gonal elements of HI, a given e is always multiplied 
by its conjugate e*. Therefore (¢; IHI¢;) is indepen­
dent of i and so the random walk can begin at any site 
and the number of returns will be the same. This im­
portant result allows us to remove the (l/NM) 6i in 
Eq. (3). Any site is "typical" in respect to random 
walks as long as it is sufficiently far from the sur­
face that the walk does not reach the surface. This 
result is perhaps a little surprising as all the struc­
tures considered in this paper, except fcc, contain 
sites not related by a vector in the translation group 
of the structure. 

V. DISCUSSION 

It is amusing to notice that the two structures con­
sidered in Secs. III and IV, which have the interesting 
property with respect to random walks, are the clos­
est packed (12 neighbors) and loosest packed (4 neigh­
bors) of the three-dimensional structures. The main 
interest is in the equivalence of the random walks; 
however, the equivalence between the density of states 
for the Hamiltonian (1) is also of some interest. 

We have found it convenient in this work not to de­
fine a wave vector kz in the direction of the random 
stacking. To do so is misleading even in the case of 
structures periodic in the z direction as the essen­
tial Simplicity is obscured. As an illustration of 
this we consider the fcc and hcp structures in the 
001 direction. Defining a wave vector kz' the disper­
sion E001 along 001 for the hcp, where the separa­
tion between adjacent planes is c = (.J2/3) a, is given 
by the eigenvalues of a 2 x 2 matrix, 

3V(1 + e i2k z C )j 
6V ' 

(14) 

i.e., EOO! = 6 V(l ± coskzc) (15) 

These two branches are shown in Fig.2. The Bril­
louin zone has a hexagonal cross section perpendicu­
lar to the kz axis and a height 21T/2c in the kz direc­
tion. It is possible to describe the fcc lattice in a 
similar manner although it is more usual to exploit 
the cubic symmetry to its greatest extent and have 
only one atom in each unit cell, so that z axis becomes 
a 111 direction. However, we can define a kz vector 
and the dispersion Eo01 along 001 is now given by 
the eigenvalues of a 3 x 3 matrix, 

[

6V 3V 
3V 6V 
3 Ve- 3ikz c 3V 

3ve3ik
z

C
] 

3V , 
6V 

(16) 

E001 = 6V(1 + coskzc) 

and 6V [1 - cos(kzc ± 1T/3). (17) 

These three branches are also shown in Fig. 2. The 
Brillouin zone again has a hexagonal cross section 
perpendicular to the kz direction but its height is only 
21T /3 C corresponding to a repeat distance of 3c for the 
fcc structure as opposed to 2c for hcp. This zone is 
only i the size of the Brillouin zone that is usually 
used for the fcc structure; however ,every k vector 
has three modes associated with it instead of just one. 
n can be seen immediately from -Fig. 2 that the ener­
gies are the same for the two cases as required by 
the result of Sec. 3; however, the k space description 
is quite different; in particular the zero energy mode 
is at the zone center in hcp and at the zone boundary 
in fcc. As the period in the z direction gets longer, 
the height of the Brillouin zone shrinks and the num­
ber of modes associated with each k vector increases 
until in the limit of no periodicity in the z direction, 
kz becomes zero and there are M modes associated 
with each k vector in the plane perpendicular to the 
z axis. 

In the theory of magnetic insulators, the Heisenberg 
Harr~iltonian with nearest neighbor ferromagnetic 
coupling is often used. 5 Within the states of one-spin 
deviation, this Hamiltonian reduces to the simple hop­
ping Hamiltonian (1) apart from a constant. Thus the 
denSity of spin waves states is the same for all struc­
tures in the fcc, hcp series and in the zincblende, wurt­
zite series. 

It is probable that the work of this paper can be ex­
tended to more complex Hamiltonians than Eq. (1) pro­
vided that the hopping is restricted to nearest neigh­
bors only. Recently, Thorpe and Weaire 6 have shown 
that the density of states for a model of Si or Ge con­
taining four states per atom (when spin is not con­
sidered) in a tetrahedrally coordinated structure can 
be related to the density of states of the Hamiltonian (1) 
by a structure independent transformation. Thus for 
this model the denSity of states for Si and Ge in the 
valence and conduction bands is independent of the 
structure within the zincblende, wurtzite polytype 

hcp fcc 

12V 12V 

9V 
'" 9V 

~ '" ~ .. .. 
c: c: 

lLJ lLJ 
bV r 6V 

r 
3V 3V 

1l;f;c ~ Ifz 1T/3c "-/2c ~c ~ k
z 

1f/3c 

FIG. 2. The dispersion relation along the (001) direction for 
the hcp and fcc structures. The Brillouin zone is hexagonal 
in cross section perpendicular to the z axis and has a repeat 
distance of 21T/2c for hcp and 21T/3c for fcc along the z direc­
tion. This corresponds to the conventional zone for hcp, but 
the zone for fcc is ~ of the conventional zone for that structure. 
The figure illustrates that the eigenvalues are the same for the 
two structures even though the labeling of the states in k space 
is quite different. 
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series. This leads to the import result that the band 
gap is also structure independent. The problem of the 
difference in the band structure for the zincblende 
and wurtzite structures when the hopping is not res­
tricted to nearest neighbors and when two atomic 
species are present, has been considered by Birman.4 

VI. RELATION BETWEEN THE TWO SERIES 

In this section we derive a simple relationship between 
the number of returns rz in random walks on the two 
polytype series considered in this paper. It is conveni­
ent to fix our attention upon the Simplest member of 
each series, i.e., fcc and zincblende. It is not surpris­
ing that the rz for these two lattices are related as 
zincblende is the fcc lattice with two atoms at each 
lattice point. 

The fcc lattice has one atom in the unit cell and this 
has 12 nearest neighbors which we may put at a(±I, 
±1,0),a(±1,0,±1),a(0,±I,±1). The eigenvalues E1t fCC 

of the Hamiltonian (1) are given by 

ElcC = V:6e ik • 6 

Ii 

where 
= 4 Va XY z 

a xyz = coskxa coskya + coskya coskza 

(18) 

+ coskza coskxa. (19) 

The wave vector k is of course three-dimensional and 
the sum over (j is over the 12 nearest neighbors. Via 
(3), the r z for the fcc lattice (denoted by riCC) are 
given by 
rfcc = _1_ L: (Efce)Z 

Z VZNM k k 

- 4z _ 1_ f ff" (20) 
- (21T)3-" 

x (cosx cosy + cosy cosz + cosz cosx)ldxdydz. 

The integrals in (20) can easily be evaluated for small 
values of 1 using 

_1_ f" cos 2nxdx = (2n)! l' 
21T -7[ 4n(n !)2 

-L J 11 cos2n + lxdx = 0 ' 
21T -11 

(21) 

where n is an integer. The r~ c e for 1 up to 9 are 
given in Table I. They agree with the values given by 
Domb 1 for the fcc and hcp lattices. 

The zincblende structure has two atoms at each 
lattice point of an fcc lattice. Each atom on one sub­
lattice has four nearest neighbors on the other sub­
lattice with may put at a/2(1, 1, 1), a/2(1, -1, -1), 
a/2(-I, 1,-1) and a/2(-I,-I, 1). The eigenvalues E~b 
for the zincblende structure are obtained from the 
2 x 2 matrix 

[~{j~ ~fk ] ' 
where 1\= 1 + ei{kx+ky)a +ei{kJl+kz)a + ei(kz+kx)a 

and so 

Ezb = ± 2Vv'1 + a k xyz' (22) 

where a also occurs in the dispersion relation for 
the fcc l¥t'tice and is given by (19). The number of 
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TABLE 1. The number of returns to the origin Y l for the first few 
walks on the fcc, hcp series [calculated from Eq. (20) 1 and for the 
zincblende, wurtzite series [calculated from Eq. (24)). 

fcc, hcp polytype series zincblende, wurtzite polytype series 

Yl Y l 

0 1 0 1 
1 0 2 4 
2 12 4 28 
3 48 6 256 
4 540 8 2716 
5 4 320 10 31 504 
6 4:l 240 12 387 136 
7 403 200 14 4 951 552 
8 4 038 300 16 65218 204 
9 40 958 400 18 878 536 624 

returns rfb for the zincblende are obtained from (3) 
and (22): 

r~b= _1_ :6 (E£b)21 
1 V2lNM k 

= 41 (2~)3 1,) J1f (1 + cosx cosy + cosy cosz 

+ cosz cosx)ldxdydz, (23) 

where I is an integer. There are no returns involving 
walks with an odd number of steps. The summation 
over k is over both branches of the spectrum (22). 

It is clear that from (20) and (23) we can derive a 
simple relation between r~cc and r~b 

t 

r
2
zb = L; 4m-l(m) rice (24) 

m "<=0 1 I • 

We have used (24) to derive rfb for l up to 18. This 
extends the table given by Domb 1 for the diamond 
structure which goes to 1 = 12. The results are shown 
in Table I. Notice that there are no returns consist­
ing of an odd number of steps. This is because all the 
members of the zincblende, wurtzite series can be 
split into two interpenetrating sublattices as des­
cribed in Sec. IV. 

The density of states for the Hamiltonian (1) for the 
fcc lattice has been calculated numerically by Frik­
kee 7 and expressed in terms of elliptic integrals by 
Joyce,S Using (18) and (22), the density of states for 
the zincblende structure can be found by a simple 
transformation on the density of states for the fcc 
lattice ,6 

Vll. CONCLUSIONS 

We have shown that the density of states for a simple 
hopping Hamiltonian is the same for all structures in 
the fcc, hcp polytype series and in the zincblende, 
wurtzite polytype series. This result is then used 
to show that the number of returns to the origin in a 
walk starting from any point and having a given num­
ber of steps is the same for all members of each of 
the two polytype series. A relationship is given be­
tween random walks on the two sets of structures. 

Note added in proof: I would like to thank M. E. 
Fisher for informing me of his unpublished proof of 
the equivalence of random walks on the lattices of the 
fcc, hcp polytype structures. This rather elegant 
proof utilizes generating functions (see Ref. 1) and its 
extension to the zincblende, wurtzite poly type series 
is discussed briefly in the Appendix of J. F. Nagle, 
J. Math. Phys. 7, 1484 (1966). 
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The (not necessarily linear) vector differential equation 

~ = f(u(z),M(z), z), u(O) = g[M(O)] 

is first considered, where M(z} is a finite-state Markov process which has, in general, a nonstationary transi­
tion mechanism. The jOint process {u(z}, M (z)} is a Markov process, and forward and backward Kolmogorov 
equations are derived for the tranSition probability density functions. Attention is then turned to the linear 
matrix differential equation 

dW 
dz = A(M(z}, z)W(z), W(O) = y[M(O»), 

where Wand yare n x m matrices and A is an 11 x 11 matrix. The forward equations for the corresponding 
probability density functions are used to obtain two different, but equivalent, formulations for the calculation of 
the moments of any given order, and of the correlation functions, of the solution. The calculation of the mo­
ments and correlation functions is reduced to the solution of systems of linear ordinary differential equations, 
with prescribed initial conditions. The inhomogeneous matrix equation 

dY 
dz = A (M(z), z)Y(z) + B(M(z), z), Y(O) == ,,[M(O») 

is also conSidered. Some applications, in particular to the calculation of the average modal powers in ran­
domly coupled transmission lines, will be given elsewhere. 

1. INTRODUCTION 

This paper is concerned with the calculation of the 
moments and correlation functions of the solutions of 
the stochastic matrix differential equation 

dW 
dz = AQVf(z), z)W(z), (1. 1) 

satisfying the initial condition 

W(O) = y[M(O»), (1. 2) 

where M (z) is a continuous parameter, fini te- state 
Markov chain1 which has, in general, a nonstationary 
transition mechanism. Here W(z) and y(.) are n x m 
matrices and A(', .) is an n x n matrix valued func­
tion of its arguments. Application of the results to 
the calculation of the average power in each of two 
randomly coupled modes, traveling in the same direc­
tion in a transmission line, will be made in another 
paper. 

The results of this paper generalize and extend those 
of a recent paper by McKenna and Morrison,2 in 
which equations were obtained for the first- and 
second-order moments of the solutions of the two 
pairs of equations 

dUm 
·_--v dz - m' m = 1,2, 

(1. 3) 

satisfying the nonstochastic initial conditions 

The system (1. 3) and (1. 4) may be written in the 
matrix form (1. 1) with 

(1. 4) 

(1. 5) 

In an earlier paper by McKenna and Morrison3 the 
solutions of (1. 3) were considered in the special case 
j(M(z)} = T(z), where T(z) is the random telegraph 
process, 4 and the correlation functions were calcu­
lated, in addition to the moments. 

The starting point of the present analysiS is the real 
(not necessarily linear) vector differential equation 

du 
dz = f(u(z), M(z), z), (1. 6) 

subject to the initial condition 

u(O) = g[M(O)]. (1.7) 

Here u(z) is a column vector with components u.(z), 
i = 1, ... , L, and g(.) and f(', ., .) are L-vector ~alued 
functions of their arguments. The sample functions 
of the Markov process M(z) can take on only the 
values ap , P = 1, ... , N, and the paths are assumed to 
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tion of its arguments. Application of the results to 
the calculation of the average power in each of two 
randomly coupled modes, traveling in the same direc­
tion in a transmission line, will be made in another 
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which equations were obtained for the first- and 
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solutions of (1. 3) were considered in the special case 
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process, 4 and the correlation functions were calcu­
lated, in addition to the moments. 

The starting point of the present analysiS is the real 
(not necessarily linear) vector differential equation 

du 
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subject to the initial condition 
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functions of their arguments. The sample functions 
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be right- continuous. Applications in control theory 
involving equations of the form (1. 6) have been con­
sidered by Wonham,5 and earlier by Krasovskii and 
Lidskii, 6, 7 in the case that M(z) has a stationary 
transition mechanism, and the initial vector u(O) does 
not depend on M(O). However, our interest in system 
(1. 6) is somewhat different from theirs. 

We assume that sufficient conditions are imposed on 
f(', ., .) to ensure, for each sample function M(z) (ex­
cept a set of measure zero), the existence and unique­
ness of the solution u(z) of (1. 6) and (1. 7) on some 
interval of the half-line 0:5 Z < 00, which contains the 
origin. It is easy to see that the joint process {u(z), 
M(z)} is a Markov process on this interval. The pro­
babili ty density functions ap (u, z), p = 1, ... , N, are 
defined by 

ap(u, z)dLu = Prob{u:s u(z) :5 u + du, M(z) = ap}, 

where dLu is the volume element 
L 

dLu == n dui • 
i =1 

(1.8) 

(1.9) 

Here V:5 W means that the inequality holds compon­
ent by component. Stochastic averages of functions 
of the form F(u(z) , M(z), z} are given by 

N 

(F(u(z),M(z),z» =6 JRL F(u,ap,z)ap(u,z)dLu , (1.10) 
p =1 

the integration being over the entire Euclidean L 
space,RL. 

In Sec. 2 we summarize those properties of the finite 
state Markov chain M(z) which are needed. A formal 
derivation of the partial differential equations satis­
fied by the probability density functions ap(u, z),p = 
1, '" ,N, is given in Appendix A. 

We are aiso interested in the transition probability 
density functions PP'l (u, z; v, 0, p, q == 1, ... , N, de­
fined for 0:5 ~ :5 Z by 

Ppq (u, z; v, ~)dLU = Prob{u:5 u(z) :5 u + du, 

M(z) = ap lu(~) = v, M(O = aq }. (1.11) 

Stochastic averages of functions of the form C(u(z), 
M(z),z;u(~),M(~), n are given by 

(C(u(z), M(z), z; u(~), M(~), ~» 
N N 

= 6 ~ kL .kL C(u, ap' z; v, aq,~) 
p =1 q=l 

X Ppq (u, z; v, ~)aq(v, ~)dLU dLv. (1. 12) 

Averages of functions involving three or more pOints 
can also be calculated with the aid of the transition 
probabilit~ density functions, since the joint process 
{u(z),M(z)J is a Markov process. 

The forward and backward Kolmogorov equations for 
the transition probability density functions are given 
in Sec. 2. The forward equations for Ppq (u, z; v, ~), 
with q, v and ~ fixed, are the same as those for 
a (u, z), but the boundary conditions are, of course, 
different. The backward equations for Ppq (u, z; v, ~), 
with p, u, and z fixed, are derived in Appendix B, and 
give the adjoint formulation. From the backward 
equations, an alternate formulation for calculating 
the stochastic average of F(u(z), M(z), z) is obtained. 
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In Sec. 3 the linear matrix system (1. 1) and (1. 2), 
which may be written in vector form, is considered. 
With the help of the equations for the corresponding 
probability and transition probability density func­
tions, expressions are derived for the moments of 
any given order, and the correlation functions, of the 
solution of (1. 1) and (1. 2). Some of the details are 
given in Appendix C. The calculation of the moments 
and correlation functions involves the solution of sys­
tems of linear ordinary differential equations with 
prescribed initial conditions. In the case in which 
the process M(z) has a stationary transition mech­
anism and A is a function of M(z) alone, these equa­
tions have constant coefficients. 

In Sec. 4 we give alternate, but equivalent, formula­
tions for the calculation of the moments and corre­
lation functions. The alternate formulations for the 
first- and second-order moments correspond to 
those obtained by McKenna and Morrison2 for the 
particular system (1. 3) and (1. 4). 

In Sec. 5 the inhomogeneous stochastic matrix dif­
ferential equation 
dY d == A(M(z),z)Y(z) + B(M(z),z), yeO) = ,,[M(O)], 

z (1. 13) 

is considered. Here Y, Band" are n x m matrices, 
and A is as before. The system (1.13) may be re­
written as an augmented homogeneous system, so 
that the previOUS results are applicable. The mo­
ments of order s of the solution of (1. 13) are coupled 
to those of order (s - 1), for s = 1,2, .. '. Thus the 
moments may be calculated successively for increa­
Sing order. 

2. EQUATIONS FOR THE PROBABll.ITY DENSITY 
FUNCTIONS 

We first summarize those properties of the finite 
state Markov chain M(z) which we will need. 1 The 
sample functions M (z) are defined on the half-line 
0:5 Z < 00, can take on only a finite number N of dis­
tinct values ap'p = 1, ... , N, and have right-continu­
ous paths. An initial probability distribution is 
given, 

Cip = Prob{M(O) = ap }, p = 1, ... ,N, (2.1) 

where Cip > 0 and 
N 

6 Cip = 1. (2. 2) 
p=l 

We consider only those processes which can be de­
fined by means of continuous, bounded infiniteSimal 
generators. Thus we assume given an N x N matrix 
function 

satisfying the conditions 

Tpq(Z) 2: 0, P "" q, 

and 
N 

:0 Tpq(Z) = 0, p = 1, ... ,N. 
q= 1 

(2.3) 

p,q=I, ... ,N, 
(2.4) 

(2.5) 

Definition 2.1. E;n) (x,y) is the event thatM(y) = 
a and M (z) changes value n times in the interval 
(f,y). 
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The events E;n) (x ,y) and E;m) (x ,Y) are clearly mutu­

ally exclusive for m '" n and U ~ =0 E ;m) (x, y) is just 
the event M (y) == ap • Define 

~~n)(x,y) = prob{E;II}(x,y)IM{X) = aq }. (2.6) 

Then,for OZ -)0 +, p,q = 1, •.. ,N, 

pp~O)(z, Z + oz) == 1 + Tpp(Z)OZ + o(oz), (2.7) 

Pqy)(z,z + oz) ==Tqp(Z)OZ +o(oz), q "'p, (2.8) 

00 

6 p;) (z, Z + OZ) == o{OZ). (2.9) 
n 02 

If the matrix T is constant, then the process M(z) is 
said to have a stationary transition mechanism. 

In Appendix A we derive the equations satisfied by 
the probability density functions a (u, z), p = 1, ... , 
N, defined by (1. 8), where u(z) is tbe solution of (1. 6) 
and (1. 7). It is found that 
aup LaN 
:;-- + 6 " [J;(u, ap' Z)Up(U, z)] - 6 Trp (z)ur(u, z) == o. 
uZ i=l uU; r~l (2.10) 

From (1. 7), (1. 8), and (2.11), the initial conditions 
are 

ap(u,O) = Cip o[u - g{ap)], p == 1, ... , N, (2.11) 

where 0 denotes the delta function. 

Now consider the transition probability density func­
tions Ppq (u, Z; v, ~), p, q = 1, ... , N, defined by (1. 11). 
For Z > ~ and fixed q, v and ~,we may derive equa­
tions for Ppq (u, Zj v, ~) in a manner analogous to that 
used in AppendiX A in obtaining the equations for 
pp(u, z). Since the joint process {u(z), M(z)} is a Mar­
kov process, it follows that the probabilities of 
events at Z + 6z, conditioned on (u(z),M(z» and 
(u{~), M (~», are just the probabilities conditioned on 
(u{z),M(z» only. 

Consequently, for fixed q, v, and ~,it is found that 
ppq(u, z; v,~) satisfies Eq. (2.10), that is, 

op L 
pq '\' a -a- + L.I -a - [Ji(u, ap' z)ppq (u, Z; v, m 
Z ;01 Ui 

N 

-6 Trp(Z)Prq{u,z;v,~) = 0, Z > ~ 2: 0, (2.12) 
r ~1 

p, q = 1, ... , N. However, from (1.11), the initial 
conditions are 

Ppq(u,~; v,~) == Opq o(u - v), p, q = 1, ... , N, (2.13) 

where Opq is a Kronecker delta. It follows from 

(2. 10)- (2. 13), or from (1. 7), (1. 8) and (1.11), that 
N 

up(u,z) =6 CiqPpq(u,z;g(aq),O). (2.14) 
q=l 

Equations (2.12) are the forward equations for the 
transition probability density functions Ppq (u, z; v, ~). 
In Appendix B we derive the backward equations, in 
which p, u, and Z are held fixed. It is shown that 

appq ~ appq ar- +i~-/i(V, aq, ~) a-v;- (u, z; v,~) 

N 

+ L; Tqr(~)ppr(u, Z; v,~) == 0, ° ~ ~ < z, (2.15) 
r~l 

p, q = 1, ... , N. From (1.11), the boundary condition 
is 

Ppq (U, z; v, z) = Opq o(u - v), p, q == 1, "', N. (2.16) 

The formulation in (2. 15) and (2.16) is the adjoint of 
that in (2.12) and (2.13). We remark that, in the case 
in which the process M{z) has a stationary transition 
mechanism, Wonham 5 gives the infinitesimal genera­
tor for the joint process {u(z),M(z)}, which was 
derived earlier by Krasovskii and Lidskii. 6,7 The 
backward equation (2.15) may be derived by means 
of this generator. 

Now, from (1. 10) and (2.14), 
N N 

(F(u(z), M(z), z») == 6 L; Ci q 
P =1 q~ 1 

X,kL F(u, ap' z)ppq (u, z; g(aq), O)dLu. (2.17) 

Let 
N 

5'q (z; v, ~) == 6 JR L F(u, a p' z)ppq (U; Z; v, ndLu. (2.18) 
p=l 

Then, from (2.15) and (2.16), 

a5' L a5' N 

a~q +i~fi(v,aq,~) av: +~1 Tqr(~)5'r = 0, 

O:s~<z, (2.19) 
with boundary condition 

5'q (z; v, z) == F(v, aq, z), q == 1, ... , N. 

Also, from (2.17) and (2.18) 
N 

(F(u(z), M(z), z») = 6 Ciq 5'q (z; g(aq), 0). 
q= 1 

(2.20) 

(2.21) 

In the next section we use the forward equations to 
calculate the moments and correlation functions of 
the solutions of the system (1. 1) and (1. 2). The mo­
ments may also be calculated from the backward 
equations, but we omit the details. We have given the 
backward formulation (2.19)- (2.21) as a matter of 
completeness, since it is often more convenient for 
calculating stochastic averages other than moments. 

3. MOMENTS AND CORRELATION FUNCTIONS 

We now consider the system (1. 1) and (1. 2), and use 
the results of the previous section to calculate the 
moments, and correlation functions, of the solution. 
Let the n x m matrices Wand y, and the n x n mat­
rix A, have components 

(3.1) 

Then 
dWik II 

dZ =~ Aij(M(z),Z)wjk(Z), Wik(O) ==Yik[M(O)], (3.2) 

i = 1, ... ,n, k = 1, .. . ,m. The system (3.2) may be 
written in vector form, by forming a column vector 
with nm components from the m successive column 
vectors (wil ), ... , (wim), with n components each. This 
leads to a system of the form (1. 6) and (1. 7), with 
L =nm. 

The probability density functions ap CW, z), p = 1, ... , 
N, corresponding to the system (3.2), satisfy, from 
(2.10), the equations 
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(3.4) 

Since equation (3.3) is homogeneous in the elements 
of W, it is possible to obtain equations for the mo­
ments of any given order. Some of the details are 
given in Appendix C, and we summarize the results 
here. We denote by W(s) the s-fold Kronecker pro­
duct of the matrix W with itself.s Then the sth-order 
moments of up are given by 

(W(z) (S»p = k,nm W(s)up (W, z)dnmw, (3.5) 
where n m 

dnm W == fl fl dw .• 
i~l k~l zk 

From (1. 10), the expected value of W(s) is given by 
N 

(W(z)(s»==.6 (W(z) (s»p' (3.6) 
p~l 

For the first- order moments it is found that 

d N 
dz (W(z»p = A(ap' z)(W(z»p + ~l Trp(Z) (W(z»r' (3.7) 

with initial conditions, from (3.4), 

(3.8) 

For the second-order moments it is found that 
d N 

dz (W(z) x W(z»p == El Trp(Z)(W(z) X W(z»r 

+ {[A(ap, z) x In] + [In X A(ap' zm (W(z) x W(z»p, 

(3.9) 
with initial conditions, from (3.4) and (3.5), 

p = 1, .. . ,N. 
(3.10) 

Here x denotes Kronecker product, [B x D = (bij) X 

D == (b;P)], and In denotes the unit matrix of order n. 

Actually, we could have obtained (3.9) and (3.10) by 
first deriving the equation satisfied by W(z) x W(z) 
and then applying the general result for first-order 
moments. Thus, from (1. 1), 

d { dz [W(z) x W(z)] = [A(M(z),z) X In] 

+ [In X A(M(z), z)]}(W(z) x W(z)] (3.11) 

with initial condition, from (1. 2), 

W(O) x W(O) = y[M(O)] x y[M(O)]. (3. 12) 

In this manner, or via the method of Appendix C, it is 
found that, generally, 

d N 
dz (W(z) (s»p =rLjl Trp(Z) (W(z) (s»r 

s 
+ ~ [I~I-1) x A(ap, z) x I~S-I)](W(Z)(S»p, (3.13) 

l~ 1 

where I~O) = 11 , with initial conditions 
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The expectation of W(s) may thus be calculated by 
solving the system of linear matrix differential equa­
tions (3.13), subject to the initial conditions (3.14), 
and then using (3.6). 

N ext, let us consider the calculation of the correla­
tion functions. Corresponding to (3.3), the forward 
equations satisfied by the transition probability den­
sity functions Ppq(W, z; V, ~), p, q == 1, ... , N, are, 
from (2.12), for z > ~ 2: 0, 

appq ~ ~ ~ a (wjkPpq) N az + ~ ~ '-! Aj (ap' z) ow. - ~ Trp(Z)Prq =: 0, 
.-1J-lk-1 'k r-1 (3.15) 

with initial conditions, from (2.13), 

Ppq (W, ~;V,~) == 0pqo(W - V). (3.16) 

Expressions are derived in Appendix C for the corre­
lation functions. Let the matrices +pq(z,~) satisfy the 
equations 

awpq ~ 
-,,- == A(ap' z)+pq + L..J Trp(Z)+rq, 
uZ r~1 

with initial conditions 

+"pq (L 0 = opqIn, p, q = 1, ... , N. 

Note, from (3.7) and (3.8), that 
N 

(3. 17) 

(3.18) 

(W(z»p =.6 Q'qwpq(z,O)y(aq). (3.19) 
q~ 1 

It is found that, for 0 :::: ~ :::: z, 

<W(z) x W(~» = q~ (~1 Wpq (z,~) x In) 

X (W(~) X W(O) q' (3. 20) 

This result may be expressed in augmented matrix 
form. Thus, let K(~) be the column of matrices 

K(~) =: coI(W(~) X W(~»1"'" (W(~) X W(~»N)' (3.21) 

and also let the matrix cI>(z, ~) have matrix elements 
+pq(z, ~), with <I> == (+pq)' Note that matrix equations 
may be written down for K(z) and cI>(z, ~), from (3.9) 
and (3.17). Also, from (3.18), cI>(~, 0 =: (IN X In)' so 
that cI> is a fundamental matrix. From (3.20) and 
(3. 21), 

(W(z) x W(~» =: ([EN X In)cI>(z, ~)] x In}K(O, 

O::::~::::z, (3.22) 

where EN is the row vector with all N elements equal 
to 1. 

It is remarked that if the process M(z) has a sta­
tionary transition mechanism, so that T is constant, 
and if A is a function of M (z) alone, then (3. 17) is a 
system of linear equations with constant coefficients 
and, from (3.18), 

+pq (z,~) = Wpq (z - ~,O), p, q = 1, ... , N. (3.23) 

A result equivalent to (3.20) was obtained by McKen­
na and Morrison3 for the special case of the system 
(1. 3) and (1. 4), with! (M(z», = T(z), where T(z) is 
the random telegraph process, which has a stationary 
transition mechanism and only two possible states. 
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In the next section we give alternate, but equivalent, 
formulations for the calculation of the moments and 
correlation functions. Which of the two formulations 
is preferable depends, in particular, on the relative 
sizes of nand N and the sparseness of the matrices 
involved. 

4. ALTERNATE FORMULATION 

We begin by giving the alternate formulation for the 
first-order moments. Let the vector wh (z) denote 
the hth row of the matrix W(z), that is, 

h = 1, ... ,n, (4.1) 

and let 0h (z) denote the column of matrices 

(4.2) 

Then, from (3.6), the expected value of wh is 

We ~efine the N x N diagonal matrices q/z) and 
"ik' Z,} = 1, .. . ,n, k = 1, .. . ,m, by 

where p ranges from 1 to N along the diagonal and 

(4.5) 

Then it follows from (C1) that 
dO n 

dz
h =J~- ~/z)nj(z) + Tt (Z)Oh(Z), (4.6) 

where t denotes transpose. Also, from (3.8), 

0h (0) = (lIh1a t , ... , "hm at), h = 1, .. . ,11, (4.7) 

where 

a = (al> . ", aN) (4.8) 

is the row vector of initial probabilities given by 
(2.1). Note, from (2.2), that ENat = 1. 

McKenna and Morrison2 obtained equations for the 
first-order moments of the solutions of the system 
(1. 3) and (1. 4) in a form corresponding to (4.3), (4.6), 
and (4.7). Thus, for this system, corresponding to 
(1. 5), n = 2, m = 2, and 

Dll = 0 = D22, D12 = IN' D21 = - B, (4.9) 
where 

B = t3~IN + 11t3~ diag[J(ap)]' (4.10) 

Also, from (1. 4), 

"ik = °jkI 2' (4.11) 

Making the identifications 

01 = (U1' U2), 02 = (VI' V2), (4.12) 

we obtain the previous results. 2 

We consider next the second-order moments, and de­
fine the column of matrices 

Then, from (4.1), (4.4), and (C3), 

dOjh dz = Tt(Z)Ojh(Z) 
n 

+ 6 [DJj(z)Ojh(z) + ~j(z)Ojj(z)], (4.14) 
)01 

We define the N x N diagonal matrices ~jghl,f, h = 
1, ... ,n, g,l = 1, ... ,m,by 

~jghl = diag[Yjg(ap)Yhl(ap)]' (4.15) 

Then, from (3.10), the initial conditions are 

0jk(O) = (~j1h1at, ... , ~j1hmat, ... ,~jmhlat, ... , ~jmkmat). 
(4.16) 

Finally, from (3.6), the expected value of (wj x wh ) is 

(4.17) 

For the system (1. 3) and (1. 4), we obtain the results 
of McKenna and Morrison2 for the second-order 
moments by making the identifications 

011 = (X1,XO,XO,X2), 0 22 = (Zl' ZO' ZO' Z2)' 

t(012 +021) = (Yl>YO'YO'Y2)' (4.18) 

From (4.9) and (4.14) it also follows that 

d 
dz (°12 - 021) = T t(Z)[012(z) - 021(z)] (4.19) 

Since ENTt(Z) == 0, from (2.5), this implies that 

(4.20) 

using the initial values in (1. 4). This result is a con­
sequence of the identity 

(4.21) 

Returning to the general case, we give the alternate 
form of the equations from which the sth- order 
moments may be calculated. Thus, define the column 
of matrices 

It may be shown that 

d 
([Z 0,\_ .. k

s 
= T t (Z)Oh

1 
... h

s 
(z) 

n 

+ M [~lj(Z)Oj •.• h/Z) + ... + Dhsi (z)O~ .. )z)], 
(4.23) 

with appropriate initial conditions obtained from 
(3.14). Also from (3.6), 

(Wh (z) x .,. X wh (z» = ENOh h (z). 
1 s 1'" s 

(4.24) 

Lastly, we consider the alternate formulation for the 
calculation of the correlation functions. Let the 
matrices 8hk (Z, ~) satisfy the equations 

i:l8hk n 
-,,- = 6 ~/Z)8jk + Tt (z)6hk, (4.25) 

uZ J o l 

with initial conditions 
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Bhk(~' 0 = 0hklN' h,k = 1, .. . ,n. 

Note, from (4.6), that 
n 

0h(Z) = 6 Bhk(Z,O)Ok(O). 
k=1 

It is shown in Appendix D that 
n 

(4.26) 

(4.27) 

<wf(~) X wh (z» = 6 ENBhk(z, ~)Ofk(~)' O:S~:5z. 
k=l (4. 28) 

This result may be expressed in augmented matrix 
form. Thus, let H(~) be the column of matrices 

H(~) = col (011 (~), .• " 0ln (0, ... ,Unl (~), ••• , nnn (~», 
(4.29) 

and let the matrix 6(z, 0 have the matrix elements 
6hk (z, ~), with 6 = (6h~)' Matrix equations may be 
written down for H(z) and 6(z, ~), from (4.14) and 
(4.25). From (4. 26), 6(~,~) = (In X IN)' so that 
6 is a fundamental matrix. Also, from (4.16), 

(4.30) 

where:;: is obtained by replacing each element 
t'jgYhl of r x y by the matrix ~f,'fhl' given by (4.15). 
From (4.28) and (4.29), 

<W(~) x W(z» = {In X [(In X EJ)6(z, ~)]} H(~), 

O:s ~:s z. (4.31) 

Note the interchange of z and ~ between the left-hand 
sides of (3.22) and (4.31). 

5. INHOMOGENEOUS LINEAR EQUATIONS 

In this final section we consider the inhomogeneous 
linear stochastic matrix differential equation 

::; = A(M(z),z)Y(z) + B(M(z),z), 

with initial condition 

Y(O) = y[M(O)]. 

(5.1) 

(5.2) 

Here Y, B, and yare n x m matrices, and A is an n x n 
matrix. The system (5. 1) and (5. 2) may be written 
in the equivalent homogeneous form 

iY(o)l - [y[M(O)]] 
LZ(O)J - 1m ' 

(5.3) 

which implies, in particular, that 

(5.4) 

Consequently, the results of the previous sections are 
immediately applicable. 

Let us consider the first- order moments. Thus, from 
(3.7) and (3.8), 
d N 

dz (Y(z»p = ~ Trp(Z)(Y(z»r + A(ap, z)(Y(z»p 

+ B(ap,z)(Z(z»p, (5.5) 

with initial condition 

(Y(O» p = apy(ap ), p = 1, ••. ,N, (5.6) 
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d N 

liz (Z(z»p =Pl Trp(Z) (Z(z»r' 

with initial condition 

(Z(O» p = Q'pIm' P = 1, ... ,N. 

It is evident, from (1. 8), (3.5), and (5.4), that 

(Z(z»p = Prob{M(z) = ap}I m • 

(5.7) 

(5.8) 

(5.9) 

These results may also, of course, be obtained by 
considering the probability density functions up\'i, z), 
p = 1, ... ,N, corresponding to the system (5.1) and 
(5.2). Thus, corresponding to (2.10) and (2.11), with 
Y = (Yik)' 

oUp ~ ~ ~ o (Yjkup) 
.". + L.J L... L.J Aj (ap , z) ~,,~-
uZ i=1j=l k=1 uYik 

n m au N 

+ ~ 6 Bik(ap, z)~- - 6 Trp(Z)Ur = 0, 
,=1 k=1 Y,k r=1 

with initial conditions 

(5.10) 

up \'i, 0) = Q'p 6[Y - y(a)], p = 1, ... ,N. (5.11) 

It is evident that the moments of order s are coupled 
to those of order (8 - 1), for 8 = 1,2, .... The zero­
order moments correspond to Prob{ll.f(z) = ap}. Hence 
the moments may be calculated successively for in­
creasing order. 
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APPENDlXA 

We here derive the equations satisfied by the prob­
ability density functions up(u, z),p = 1, ... , N, defined 
by (1. 8), where u(z) is the solution of (1. 6) and (1. 7). 
We first remark that up (u, z + oz)o V is, approximately, 
the probability that M(z + oz) = ap and u(z + oz) lies 
in a small volume element 0 V around the point u in 
R L. We will calculate up (u, z + oz)o V in terms of the 
probabilities of the events at z which can lead to the 
desired event at z + oz. From Definition 2.1, the 
event M(z + oz) = ah is the union of the three mutu­
ally exclusive events E~O)(z,z + oz),E?)(z,z + oz), 
and U ':=2 E,) (Z, z + oz). 

Since the event E~O)(z,z + 6z) implies thatM(x) = Op, 

for z :s x :s Z + OZ, then, from (1.1), it also implies 
that 
u(z) = u(z + oz) - f(u(z + oz),ap,z)oz + o(oz). (AI) 

Under this transformation, the small volume element 
o V around u(z + oz) == u is transformed into a small 
volume element 0 Vp around u(z) = [u - f(u, Op, z)oz + 
o(oz)], and 

a(u 1 (z), •.. ,uL(z» 
oV = oV 

p a(u 1 (z + oZ), ... ,uL(z + oz» 

( 
L oJ:. ~ = 1 - ~ a--.!.... (u, ap ' z)oz + o(oz) oV, 

,=1 u, 
(A2) 

from (AI). Next, the event E~l) (z, z + oz) implies that 
M(z + oz) = ap and M(z) = aq,q ;r. p. In this case 
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u(z) lies in a small volume element 6 Vq around u(z) = 
[u + 0(1)], and 6Vq = [1 + 0(1)]6V. 

We now combine the possible events at z leading to 
the desired event at z + 6z and, from (2.6)- (2.9), 
obtain 

ap(u,z + 6z)6V = [1 + Tpp (z)6z]ap(u- f(u,ap,z)6z,z)6Vp 

+(6 Tqp (z)6zaq(u,z) + 0(6z)\6V. (A3) 
qiP ') 

Dividing Eq. (A3) by 6 V and using (A2), then subtract­
ing ap(u, z) from each side and dividing by 6z, we ob­
tain, in the limit 6z ---7 0+, 
aa LaN 
-at + 6 -a . [.t;(u, ap' z)ap(u, z)] - 6 Tqp (z)aq (u, z) = 0, 

z ,=1 U, q c 1 

P = 1, ... ,N. (A4) 

APPENDIXB 

We here derive the backward equations for the tran­
sition probability density functions, defined by (1.11). 
For 0 ~ ~ < z, we consider a small increment 6~ in 
~,with ~ + 6~ < z, and determine the probability of 
events at z, given that u(~) = v and M (~) = aq , in 
terms of the events that may occur in the intervals 
(~, ~ + 60 and (~ + 6~, z). Firstly, from (2.6) and 
Definition 2.1, 

00 

Prob{M(~ + 60 = ar IM(~) = aq } = 6 ~~n) (~, ~ + 6~). 
n=O (Bl) 

The event E~O) (~, ~ + 60 implies that M(x) = aq , 

~ ~ x ~ ~ + 6~, and hence, from (1. 6), that 

u(~ + 60 = u(~) + f(u(~), aq , ~)6~ + 0(6~). (B2) 

Secondly, given M(O = aq , the event E;l) (~, ~ + 60, 
q ;c r, implies that u(~ + 6~) = u(~) + 0(1). 

Since the joint process {u(z), M (z)} is a Markov pro­
cess, the probabilities of events at z conditioned on 
(u(x) , M(x)), ~ ~ x ~ ~ + 6~, are just the probabilities 
conditioned on (u(~ + 6~),M(~ + 00). Hence, from 
(1. 11), (2.7)- (2.9), (Bl), and (B2), it follows that 

ppq(u, z; v, ~)dLu = (6 Tqr(~)O~Ppr (u, z; v, ~) + 0 (6~~dLu 
\r *q ') 

+ [1 + Tq/~)O~]ppq(u, z;v + f(v, aq, ~)6~, ~ + 60dL u. 

(B3) 

Subtracting the left- hand side of (B3) from the right­
hand side, dividing by dLu6~, and letting 6~ ---70+, we 
obtain the backward equations (2.15). 

APPENDIXC 

We begin by conSidering the moments of ap(W, z), de­
fined by (3.5). For the first-order moments we mul­
tiply Eq. (3. 3) by W h1 ' and integrate with respect to 
the elements of W over Rnm. After an integration by 
parts we obtain 

d n N 

dz (Wh1)P =6 Ah/ap' z) (w)p + 6 Trp (z)(wh1)r. (Cl) 
)=1 r=l 

This may be written in the matrix form (3.7). 

Next, for the second-order moments, we multiply Eq. 
(3.3) by wfgWh1 , and integrate over Rnm. But, 

n m a 
66 Aij(ap, z)wjk -a - (wfgwhzl 
i=l k=l Wik 

= Afj(ap, z)WjgWhl + Ah/ap' z)wj/wfg • (C2) 

n 

+ M [Ajj(ap, z) (wjgWh)p +Ahj(ap, z)(wfgwj)p]. (C3) 

This may be written in the matri:x form (3.9), since 

(AW) x W = (A x In) (W x W), 

W X (A W) = (In X A) (W X W). 
(C4) 

The higher- order moments may be calculated in a 
similar way. 

We now consider the correlation functions, and de­
fine the matrix functions Xpq (z; V, n, p, q = 1, ... , N, 
by 

Xpq (z; V, 0 = .knm Wppq(W, z; V, ~)dnmw. (C5) 

It follows from (3.15) that 

aXpq .;. 
~ = A(ap' z)Xpq + L..J Trp (Z)Xrq , 

y=l 
(C6) 

with initial conditions, from (3.16), 

(C7) 

It then follows that 

(C8) 

where the matrices 'I1pq, p, q = 1, ... , N, satisfy (3.17) 
and (3.18). 

But, from (1. 12), for 0 ~ ~ ~ Z, 

N N 

(W(z) xW(m =6 6 Lm LTY< (W X V) 
pol q=l R R 

X Ppq (W, z; V, ~)aq(V, ~)dnmWdnrnv. (C9) 

Hence, from (C5) and (C8), 

(W(z) x W(~» 
N N 

= 6 6 [+pq(z, O X In] fnm (V X V)aq(V, ~)dnmv. 
p=l q=l R (CI0) 

Thus, from (3.5) and (CI0), we obtain (3.20). 

APPENDIXD 

We here derive the alternate formulation for the cal­
culation of the correlation functions. We define the 
N x N matrix p and the column vector (J by 

Then, from (4.4), Eq. (3. 15) may be written in the 
form 

(Dl) 

ann rn a (w p) 
.J!. + 6 6 6 D . . (z) _J_'k_ - Tt (z)p = 0, (D2) a z i = 1 j = 1 k 0 1 I) a wik 

with initial condition, from (3.16), 

p(W,~; V, ~) = 6 (W - V)IN • (D3) 

J. Math. Phys., Vol. 13, No.3, March 1972 
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Also, from (I. 12), 

(Wjg{~)Whl{Z» 

= EN inm inm VjgWhIP{W, z; Y, ~)O"(V, ~)dnmw dnmy. 
R R 004) 

We now define the matrix functions Ahl{z;Y, ~), h = 
1, ... ,n, l= 1, ... ,m,by 

Ahl (z;Y,~) = ~nm U'hlP(W, z;Y, ~)dnmw. (D5) 

Then it follows from (D2) that 
all. n 
~ = 6 1\ . (z)A jl +Tt(z)Ahl , uZ jol J 

(D6) 

1 J. L. Doob. S/oc/ws/ic Processes (Wiley, New York, 1953), 
pp. 235- 55. 

2 J. McKenna and J. A. Morrison, J. Math. Phys.12, 2126 (1971). 
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with initial condition, from (D3), 

Hence, from (4.25) and (4. 26), 
n 

Ahl (z; Y, ~) = 6 8hk {Z, ~)Vkl' 
koI 

Thus, from (D4), (D5), and (DB), 
n 

(D7) 

(DB) 

(1Ujg(~)Whl (z» = 6 EN inm 8hk {Z, OVjgVdJ(V, Odnmy. 
kol R 

(D9) 

Equation (4. 2B) follows from (3.5), (4.1), (4.13), and 
(Dl). 
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The relation of space-time to internal symmetries in relativistic quantum mechanics is investigated using the 
Mackey theory of induced projective representations of group extensions. Representation multipliers are found 
for semidirect products of the Poincare group and arbitrary internal symmetry groups. Upon investigating a 
typical example, it is found that when relations such as U.Vc = (- 1)2JVc U., obtained from field theory, are 
assumed, a unique choice of representation multiplier follows; in particular, this multiplier requires rPc" = 1 
for all J. Representations relative to this multiplier are computed. 

1. INTRODUCTION 

There has been a recurrent interest in the problem of 
relating physical symmetries associated with space 
and time to other symmetries. These symmetries 
have their origin in the observed invariances of dyna­
mical systems under transformations which mix the 
charges associated with elementary particles such as 
baryon numbe:r: and electric charge. As pointed out 
by Michel, I it is improper to treat the quantum num­
bers associated with the latter symmetries, the so­
called internal symmetries, as though they were inde­
pendent of space-time quantum numbers since there 
are empirical relations between them which appear 
to hold universally such as the observation that 
strongly interacting fermions possess odd baryon 
number while bosons have even baryon number. Also, 
as emphasized by Michel and Kamber and strau­
mann, 1,2 the necessarily anti-unitary nature of the 
time inversion operator requires that time reversal 
as a group element act nontrivially on any internal 
symmetry group with which time reversal symmetry 
is combined. 

From considerations such as these, one is led to the 
general question of the possible relations between 
space-time and internal symmetries. The purpose of 
this work is to examine this question group theoreti­
cally by constructing overall symmetry groups which 
combine space-time and internal symmetries non­
trivially and by finding representations of these 

J. Math. Phys., Vol. 13, No.3, March 1972 

groups by unitary or anti-unitary operators acting on 
the Hilbert space of states of the system which is 
invariant under the over-all symmetry group. The 
basis for this investigation is the generalization made 
by Lee and Wick3 of the relation between super­
selected variables and geometriC transformations to 
include arbitrary internal symmetries. They reason 
that since the Hilbert space of a system is broken 
into "noncoherent subspaces", each labeled by the 
charges of the system such that any symmetry oper­
ator is defined only up to an arbitrary phase in each 
sector, every geometrical symmetry operator is re­
presented by a coset of the gauge group generated by 
the superselected charges. In this way, one is led to 
a larger symmetry group of the system that contains 
the gauge group associated with the charges invar­
iantly and in which the geometrical symmetry group 
need only appear as the quotient of the total sym­
metry group by the gauge group. 

This generalization is made by supposing the system 
to be described by some model Hamiltonian H, say 
one in which the electromagnetic and weak inter­
actions are neglected. An internal symmetry oper­
ator 5 is defined as a nongeometrical unitary oper­
ator that commutes with H. The group formed by the 
set of internal symmetry operators is the internal 
symmetry group of the system in Lee and Wick's 
terminology. If, now, one considers an arbitrary 
space-time transformation represented by an oper-
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Also, from (I. 12), 

(Wjg{~)Whl{Z» 

= EN inm inm VjgWhIP{W, z; Y, ~)O"(V, ~)dnmw dnmy. 
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We now define the matrix functions Ahl{z;Y, ~), h = 
1, ... ,n, l= 1, ... ,m,by 

Ahl (z;Y,~) = ~nm U'hlP(W, z;Y, ~)dnmw. (D5) 

Then it follows from (D2) that 
all. n 
~ = 6 1\ . (z)A jl +Tt(z)Ahl , uZ jol J 

(D6) 

1 J. L. Doob. S/oc/ws/ic Processes (Wiley, New York, 1953), 
pp. 235- 55. 

2 J. McKenna and J. A. Morrison, J. Math. Phys.12, 2126 (1971). 
3 J. McKenna and J. A. Morrison, J. Math. Phys.ll, 2348 (1970). 
4 A. Blanc-Lapierre and R. Fortet, Theury oJ R(/ndom FllIlclions 

(Gordon and Breach, New York, 1965), Vol. I, p.161. 
5 w. M. Wonham in Prohahilistic Me/l/Ods ill ApMied Ma/hemalics, 

with initial condition, from (D3), 

Hence, from (4.25) and (4. 26), 
n 

Ahl (z; Y, ~) = 6 8hk {Z, ~)Vkl' 
koI 

Thus, from (D4), (D5), and (DB), 
n 

(D7) 

(DB) 

(1Ujg(~)Whl (z» = 6 EN inm 8hk {Z, OVjgVdJ(V, Odnmy. 
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(D9) 

Equation (4. 2B) follows from (3.5), (4.1), (4.13), and 
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1. INTRODUCTION 

There has been a recurrent interest in the problem of 
relating physical symmetries associated with space 
and time to other symmetries. These symmetries 
have their origin in the observed invariances of dyna­
mical systems under transformations which mix the 
charges associated with elementary particles such as 
baryon numbe:r: and electric charge. As pointed out 
by Michel, I it is improper to treat the quantum num­
bers associated with the latter symmetries, the so­
called internal symmetries, as though they were inde­
pendent of space-time quantum numbers since there 
are empirical relations between them which appear 
to hold universally such as the observation that 
strongly interacting fermions possess odd baryon 
number while bosons have even baryon number. Also, 
as emphasized by Michel and Kamber and strau­
mann, 1,2 the necessarily anti-unitary nature of the 
time inversion operator requires that time reversal 
as a group element act nontrivially on any internal 
symmetry group with which time reversal symmetry 
is combined. 

From considerations such as these, one is led to the 
general question of the possible relations between 
space-time and internal symmetries. The purpose of 
this work is to examine this question group theoreti­
cally by constructing overall symmetry groups which 
combine space-time and internal symmetries non­
trivially and by finding representations of these 
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groups by unitary or anti-unitary operators acting on 
the Hilbert space of states of the system which is 
invariant under the over-all symmetry group. The 
basis for this investigation is the generalization made 
by Lee and Wick3 of the relation between super­
selected variables and geometriC transformations to 
include arbitrary internal symmetries. They reason 
that since the Hilbert space of a system is broken 
into "noncoherent subspaces", each labeled by the 
charges of the system such that any symmetry oper­
ator is defined only up to an arbitrary phase in each 
sector, every geometrical symmetry operator is re­
presented by a coset of the gauge group generated by 
the superselected charges. In this way, one is led to 
a larger symmetry group of the system that contains 
the gauge group associated with the charges invar­
iantly and in which the geometrical symmetry group 
need only appear as the quotient of the total sym­
metry group by the gauge group. 

This generalization is made by supposing the system 
to be described by some model Hamiltonian H, say 
one in which the electromagnetic and weak inter­
actions are neglected. An internal symmetry oper­
ator 5 is defined as a nongeometrical unitary oper­
ator that commutes with H. The group formed by the 
set of internal symmetry operators is the internal 
symmetry group of the system in Lee and Wick's 
terminology. If, now, one considers an arbitrary 
space-time transformation represented by an oper-
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ator U, say, it is clear that both U and ffU are physi­
cally equivalent; in fact any element of the set {ff U} 
for a fixed U will equally well represent the trans­
formation U. Thus there is a one-to-one corres­
pondence between geometrical transformations and 
cosets of the group of internal symmetry operators. 
The totality of cosets generated this way is taken to 
be the over-all symmetry group G of the system. By 
definition, the internal symmetry elements appear in 
G invariantly (this must be so in order that coset 
multiplication be isomorphic to physical space-time 
transformations). Also, these geometrical trans­
formations only appear as the quotient of G by the set 
of internal symmetries; in particular, the geometrical 
transformations need not be contained in G. It is 
seen that this approach makes a distinction between 
internal and space-time symmetries in that a space­
time transformation is physically realizable since one 
can meaningfully speak of translating, rotating, or 
Lorentz boosting a physical system while for internal 
symmetry transformations such as phase transforma­
tions or rotations in isotopic spin space it is not so 
obvious what these operations mean; this is reflected 
in the structure of the over-all symmetry group 
whereby only the cosets have operational meaning, so 
that the representatives of a given geometrical trans­
formation U, and ffU are physically indistinguishable. 

The analysis to be presented here differs in several 
respects from that of Lee and Wick. One difference 
lies in the nature of the space-time symmetry group 
considered. Lee and Wick restrict their attention to 
space and time inversions generating in either case 
what they call "minimal extensions" consisting of the 
identity coset and the inversion coset of the internal 
symmetry group. In this work the geometrical sym­
metry group will ultimately be the full Poincare 
group including space and time inversions. In addition 
to this, the internal symmetries treated will be those 
common to all strongly interacting particles such as 
isotopic invariance, hypercharge, and charge con­
jugation invariance. In contrast to Lee and Wick, sym­
metries of the super-strong interactions such as 
SU(3) will not be considered. Finally, throughout their 
work Lee and Wick deal with groups composed of 
symmetry transformation operators. This is, they 
work within the representation spaces of the under­
lying transformation groups. Due to the complexity 
of the groups considered here, it is desirable to dis­
tinguish the group from the representational aspects 
of the problem. 

The problem of combining space-time with internal 
symmetries on a group level has been studied by 
Michell and Kamber and Straumann2 using the Eilen­
berg and MacLane4 formulation of group extension 
cohomology theory. Michel's analysis is concerned 
primarily with the construction of over-all symmetry 
groups of the full Poincare group (with space and 
time inversions) P by the set of Abelian gauge groups 
generated by the conserved charges baryon number, 
electriC Charge, and lepton number with an indication 
of how one proceeds in the case of non-Abelian inter­
nal symmetry groups. Michel considers nontrivial 
actions on the int6rnal symmetry groups by time re­
versal as indicated above and a combination err of 
charge conjugation and space inversion elements. 
This was presumably motivated by Wigner's5 con­
temporary redefinition of space inversion to include 

charge conjugation, since while parity invariance was 
known to be broken at that time, err invariance 
appeared to hold universally. However, in light 
of the since discovered err violation and the Lee and 
Wick emphaSis on distinguishing space-time from 
internal symmetries, it is desirable to return to the 
earlier definition of rr as the physical operation of 
space inversion and treat e as an internal symmetry 
transformation. 

Kamber and Straumann2 have made a detailed analy­
sis of the possible action of time reversal on a class 
of internal symmetry groups I consisting of direct 
products of gauge groups with an additional semi­
simple Lie group such as SU(2). Their results indi­
cate that time reversal essentially can only cause a 
complex conjugation in the gauge group part of the 
internal symmetry group. Their work also presents 
a detailed description of the methods used in calcu­
lating the total symmetry groups as well as an indi­
cation of the structure of their vector representa­
tions. 

Michel and Kamber and Straumann conclude that the 
only physically meaningful automorphism on I that P 
can induce is generated by time reversal. As men­
tioned earlier, it is essential that time reversal act 
nontrivially on I in order to preserve both the anti­
unitary nature of the operator representative of time 
reversal and the positive definiteness of the charges 
under time inversion. Furthermore, the Lorentz 
invariant character of the charges requires that all 
other elements of P have no effect on the charge 
groups. 

The calculation of the set of nonequivalent extensions 
of P by I corresponding to the aforementioned auto­
morphism produces the result that multipliers de­
fined on P x P having values in I can be nontrivial 
only for the following elements in P x P: (t, t), (rrt, 
rrt), and (2rr, 2rr) where t is time reversal, rr is space 
inversion and 2rr is the element of the Lorentz group 
representing a rotation about an arbitrary axis by 2rr. 
Also, the multipliers can take on values only in the 
center of I. It is found that multipliers evaluated over 
the translations or any other Lorentz group elements 
including space inversion have only the identity in I 
as an image. Furthermore, it should be noted that 
there can be no multipliers defined over P and I 
having values in I. For example, multipliers such as 
a(rr, C), where e is the charge conjugation trans­
formation, taking values in I are not allowed. 

The group multiplier possibilities for a given I gene­
rate nonequivalent extensions which differ most sig­
nificantly in the relation between spin and the internal 
symmetry quantum numbers which their structures 
dictate. In particular, an internal symmetry group 
containing phase transformations whose generator is 
baryon number can be coupled to the Poincare group 
in such a fashion that the relation (- 1)2J+B = 1 is 
satisfied where J is the spin and B is the baryon 
number representation label. 

Only relations of this sort appear to be possible by 
working simply within the context of the groups them­
selves and their vector representations. While re­
lations such as (- 1)2J+B = 1 are interesting, they 
certainly do not exhaust the connections observed 
between space-time and internal symmetry variables. 
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As an example, consider the relation U 1fUe == w Ue U1f 
where w == ± 1 resulting from field theory. One finds 
that this cannot be obtained straightforwardly on a 
group level, but it will be shown in Sec. 3 how it can 
be constructed on a representational level by con­
sidering a broader class of representations, namely 
those which are defined only up to phase factors, the 
so-called ray or projective representations. The 
purpose of this work is to explore the additional re­
lations possible between space-time and internal 
symmetries by making full use of the phase ambiguity 
inherent in quantum mechanical states to construct 
projective representations of over-all symmetry 
groups. 

The mathematics needed for constructing projective 
representations of groups of interest to physiCS has 
been developed by Mackey.6 The results of the 
Mackey theory of induced projective representations 
needed here are summarized in Sec. 2, together with 
some of the modifications necessary for constructing 
representations involving anti-unitary operators 
which arise from time reversal. In Sec. 3, these 
results are applied to the problem of constructing ray 
representations of groups that combine space-time 
with strong interaction symmetries as semidirect 
products since the mathematics needed for construct­
ing representation multipliers for semidirect pro­
ducts has been provided by Mackey. The determina­
tion of representation multipliers for arbitrary ex­
tensions is a much more difficult problem and will 
not be undertaken here. It is found that representa­
tion multipliers in general do not lead to relations 
between space-time symmetries P and the continuous 
transformations belonging to the internal symmetry 
group I; only discrete elements of I such as charge 
conjugation are connected to P via representation 
multipliers. Also, it will be shown that of the multi­
plier possibilities which do arise, relations such as 
U1fUe == (- l)2J Ue U1f may be used to define a unique 
multiplier set consistent with quantum field theory. 

One of the consequences of fixing the multiplier in 
this way will be that Uent = 1 for all values of the 
spin; such a result disagrees with the relation Uem = 
(- l)2J given by Lee and Wick. 3 

2. INDUCED PROJECTIVE REPRESENTATIONS 

The purpose of this section is to provide those fami­
liar with Mackey's7 work on induced representations 
of semidirect product groups with Abelian invariant 
subgroups, with a summary of his generalization to 
include non-Abelian invariant subgroups and group 
extensions with nontrivial group multipliers. All 
questions of an analytical nature such as the existence 
of quasi-invariant measures or the necessity of intro­
ducing Radon-Nikodym derivatives into the formalism 
will be ignored. Furthermore, it will be assumed 
here and in the calculations that the orbits are transi­
tive, thereby justifying the use of Mackey's main 
theorems on the construction of induced projective 
representations. 

In the calculation of induced representations of groups 
G with Abelian invariant subgroups, one considers 
functions F over the elements g E G with the property 
F(hg) == L(h)F(g), where L is a representation of a 
closed subgroup H of G. The functions F form a 
Hilbert space with norm 
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IIF 112 = fG1Hd/-.L(g)IIF(g)lli w < CO, 

where /-.L is an (quasi) invariant measure over G/H and 
JC(L) is the vector space on which L is defined. A 
unitary representation U L of G induced by L is then 
defined by 

In order to construct induced projective representa­
tions, it is necessary to specify initially a multiplier 
a for the representation. One now considers functions 
F over the group manifold with the property 

F(hg) = [l/a(h,g)]L(h)F(g), 

where L(h) is a a representation of a subgroup H of 
G. As before, the F form a Hilbert space with the 
norm above. The unitary a representation UL of G 
induced by L is now 

(1 ) 

(2) 

Irreducible representations are obtained in the 
Abelian invariant subgroup case by choosing H to be 

H == {gig E G,M(gkg- 1 ) ~ M(k) V k E K}, 

where M is a representation of the Abelian normal 
subgroup K. The analogous H for constructing irre­
ducible a representations is given by 

H = {gl g E G, a(gk,g-l)a(g,k)M(gkg- 1 ) 

a(g-l,g) 
~M(k) V k EK}, (3) 

where M is a a representation of K. 

In terms of the groups to be considered here, the 
Mackey theorem for constructing irreducible induced 
projective representations may be stated. Given G, a 
closed normal subgroup K, a multiplier a, and an irre­
ducible a representation L of K, Mackey shows that 
there is a one-to-one correspondence between the set 
of all possible w representations N of H/K (H is the 
inducing subgroup above) and the a representations of 
H which induce a representations of G. The a repre­
sentation of H for a given w representation N is M @ 

N', whereM is a a/wof representation of iI such that 
M (k) == L(k) for all k E K,! is the canonical homo­
morphism,!: H~ H/K, and N' is the wof representa­
tion of H constructed by composing N with f. Mackey 
further shows UM@N' is irreducible if and only if N 
is irreducible. Thus the problem of finding all irre­
ducible representations of a group G corresponding 
to a given multiplier a is reduced to finding all poss­
ible irreducible multiplier representations of a sub­
group of G, namely H/K. 

It should be emphasized that the above theory is 
needed for non-Abelian K whether or not a is non­
trivial; in particular, the construction of vector re­
presentations of G starting with non-Abelian K re­
quires one to consider all possible multiplier repre­
sentations of H/K. 

So far nothing has been said about finding the repre­
sentation multiplier a. In the case where G is a semi­
direct product of a normal subgroup K by another 
group R, Mackey gives a prescription for finding 
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every multiplier II for G. Specifically, he shows that 

where Xl and x 2 belong to K, Yl and y 2 belong to R, 
Yl (x2 ) is the automorphism generated by Yl acting on 
x2' a is a multiplier for K, W is a multiplier for R, 
and g is a function from K and R into the complex 
numbers of modulus one such that 

(a) g(x, e) == 1 'If x E K, 

(b) a(y(x1 ), y(x2» = a(x l' x 2 )g(x1x2, y)/g(x 1 , Y l!;r(x2, y), 

Also, Mackey proves the converse; given a, w, and g 
as above, the II generated is a multiplier. 

(5) 

For applications to physics, the theory just sketched 
must be extended to include groups some of whose 
elements are represented by anti-unitary operators. 
Parthasarathy8 has undertaken this extension in the 
context of representations defined on functions over 
homogeneous spaces. He distinguishes two cases 
depending on whether the including subgroup H con­
tains elements represented by anti-unitary operators 
or not. The analysis to be made here differs some­
what from Parthasarathy's in that representations 
are constructed on functions defined over elements of 
G and that the inducing subgroup is computed only 
with respect to elements G+ represented by unitary 
operators. This means that H will always be contain­
ed in G+ and representations of G will look like Par­
thasarathy's second case. 8 The reasons for doing this 
are the desire to remain as close to the Mackey 
theory as possible (that is, imprimitivity systems 
based on representations of a normal subgroupK)and 
the similarity this approach has to Wigner's treat­
ment of time reversal. 9 The price one pays for using 
this procedure is that the representations are not 
necessarily irreducible with respect to the anti­
unitary elements. Practically, this means time re­
versal causes a doubling of the representation space 
in some, but not all cases. The representations found 
this way must be examined to see if this doubling 
actually occurs. 

The multiplier theorem for semidirect product groups 
determined by Mackey holds only for groups whose 
elements are represented by unitary operators. In 
including anti-unitary operators it is found that 
Eq. (4) is correct in general, but that Eq. (5) must be 
replaced by 

(a) g(x,e) = 1 'if xEK, 

(b) a(y(x1),y(x2» = U(Xl,X2)g(xlx2,y)/g(xl'y)g(x2'Y) 
(6) 

in case y in (b) and y 1 in (c) are represented by anti­
unitary operators. Note that it is assumed that 
elements belonging to K are always represented by 
unitary operators since this is the situation in the 
work undertaken here. The next section will apply the 
Mackey theory to the calculation of multiplier repre­
sentations of semidirect products of the Poincare 
group and the internal symmetry groups of strong 
interactions. 

3. REPRESENTATIONS OF I @ P 

The first goal in this section is the determination of 
representation multipliers for semidirect products of 
the full Poincare group P and a general class of 
internal symmetry groups I formed by an arbitrary 
compact Lie group I o and the two element group gene­
rated by charge conjugation Z g. It will be seen that 
the Mackey multiplier theorem extended in the last 
section to include groups with anti-unitary elements 
provides an almost unique chara~terization of the 
multiplier possibilities for I @ P. 

Consider, then, an Iof the form 10 @ Z~, where 10 is 
any compact Lie group. P acts on I only through time 
reversal in a manner determined by Kamber and 
Straumann. 2 The most general multiplier for G == 
I@Pis 

where ii' i2 belong to I,Pl,P2 belong to P, II is a multi­
plier for I and r is a multiplier for P, and g is the 
function satisfying Eqs. (5) and (6). The most general 
form of 1o is Io= U 1 X ••• x U 1 X A, where U 1 X ••• 

x U 1 is an m -dimensional torus consisting here of 
gauge groups generated by the conserved charges of 
the system and A is a semisimple Lie group.2 II, in 
general, has the form 

where i~, ig belong to I o,r l' r 2 belong to Z£ and k 
satisfies Eq. (5). Continued application of the Mackey 
formula allows one to construct all possible p for a 
given 10 , It is found that there are nontrivial solutions 
involving the gauge groups U v but that these seem to 
have no physical significance; consequently p will be 
taken to be 1. Z~ has only trivial multipliers, and so 
y = 1. Using the defining relations fork, Eq. (5), 
noting that A is semisimple, and demanding that k be 
a single-valued function restricts the possible choices 
of k to 

k«()1, ... ,()m,a),e)= 1, k«B1, ... ,Bm,a),C) 

= ei(n1fJ1+···+nmfJ,J (9) 

for all a E A, where eifJl, ••• , eifJm belongs to U 1 X 

. .. x Uland n l' ... , nm are arbitrary integers. Thus, 
there is an m - fold countable infinity of nonequivalent 
multipliers for I whose effect is to include more than 
one set of charges in an irreducible representation of 
I as will be seen later. 

It is well known5 that multipliers for P are nontrivial 
only for the discrete elements of P, that is r(Pl'P2) = 
w(x ll x 2 ) where W takes on values 

7r t rrt 
Xl 

1 1 1 
(10) 

7r 

t a{3 a {3 

1ft af3 a f3 
for a,{3 = ±1. 

It is found that g is necessarily a one-dimensional 
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representation of I for all pEP. This implies thatg 
can at most be defined over elements of I belonging 
to the center of I and Zf Similarly, since g must be 
a one-dimensional representation of Po for all i, g is 
nontrivial only for elements of the four group V. 
U sing the relations 

g(i,xlxZ) =g(x2(i),x l )g(i,x2), Xl E V+, 

=g(x2 (i),x l )g(i,xz ), Xl E V-, 

and the fact that time reversal acting on elements of 
the center of I takes them into their inverses,2 one 
finds g(i, x) :::: ± 1. In the special case where I has a 
trivial center,g(i,p) is a function only over the dis­
crete elements e, 1T, t; there are four possible g given 
by gj(e, x) :::: 1 for all x E V, i :::: 1, ... , 4, and we have 
the following. 

x 
gj«e, e), x) e 1T t 1Tt 

gl 1 1 1 1 

g2 1 1 -1 -1 
(11) 

g3 1 -1 1 -1 

g4 1 -1 -1 1 

Thus when I has no center, the space-time trans­
formations only "interact" with internal symmetry 
groups via representation multipliers through the 
discrete transformations. 

The question of which of the multiplier possibilities 
above are realized physically will be considered in 
the context of the representations of a specific 
example. To this end consider the semidirect pro­
duct G of the cover of the full Poincare group P by 
U 1 @ Z~, where U 1 is the gauge group of baryon 
number and Z~ is the two element group generated by 
charge conjugation. The automoIl>hism on U 1 @ Z8 
is taken to be complex conjugation by time reversal. 
A multiplier for G will have the form 

o«e 1, r l' p~, XI)' (e 2 , r 2' P~, x 2» 

= kn(e 2, r l)W ct /l(x l' x 2)gi (r 2' Xl)' (12) 

where k, w, and g are defined above. 

In order to find the 0 representations of G, take K :::: 
U 1 @ zg to be the normal subgroup of G. 0 repre­
sentations of K are found to be 

(

e iBe 

BL = e.e 0 ( 

0 
BL = 

e.e eiCn-B)e 

where B is an integer. As mentioned in Sec. 2, the 
inducing subgroup H will be computed only relative to 
G+, that is, the elements of G represented by unitary 
operators. In this case G+ :::: [U 1 @ Zf.] x [Po @ Z~] 
where Z~ is the two element group generated by 
space inversion. Thus 

H = f gig E G+, o(g(e,r),g-l)o(g, (e,r» BLg(e,r)g'-i 
t O(g-l,g) 

~ BLe,T V (e,r) E K}. (14) 
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H is found to be all of G+ for any of the four possible 
choices of gi' One must now find all 0 representations 
of H == G+; the Mackey prescription is first to con­
struct all ~ossible multiplier representations of 
H/K == Po (g) Z~. There are only vector representa­
tions which for mass m ;r 0 and spin J are defined on 
functions over right coset elements,7 Ac E SL(2, e), as 

N(a, A, s)FA(Ac ) :::: lIi (s)eiP'Ac(a)'6DtA,(R)FA,(SA~S), 
~ (1~ 

where a is a translation, A is an element of SL(2, e), 
s E z~, AcA :::: RA~ for R E SU(2), P is the standard 
vector (m, O),DJ(R) is an irredUCible representation 
of SU(2), and lIi(S) is an irreducible representation of 
Z~ given by 111(e) = 112(e):::: 1, 111(1T) == -1I2(1T) = 1. 

To complete the determination of irreducible 0 repre­
sentations of H, one must find a 0 representation of 
H such that Me,T = Le,T' It is found that 

M(e, r, a, A, s)~(ro) = kn(e, ro)gj (ror,s)eiBTo(e>Hror) 

(16) 
for all a, A is such a representation. Then 0 repre­
sentations Vof H are given by V(e,r,a,A,s):::: 
M(e, r, a, A, s) 0 N(a, A, s) acting on basis functions 
of the form Hr)F,\(A c )' 

In order to obtain representations defined over more 
familiar basis functions set FA(A c ) :::: (/JA(P), where 
P :::: A-;lp is a momentum variable. In a helicity basis 
one can then show FA (1T Ac1T) = (- l)J(/J_,\(P ') where 
p' = (Po,- pl. Similarly, one may set Hr) = 1/l(b) 
where He) = 1/l(B) and ~(e) = 1/l(n - B). Finally, the 
representation V may be expressed in terms of (non­
normalizable) state vectors by writing 

• 
"" f d

3
p Ix):::: LJ ytJ;(b)cp,\(p)l(m,J,IBI]p,II.,1lb,b), (17) 

b,A 

where the state vector under the integral sign is 
labeled by the irreducible representation labels m, 
J, I B I corresponding to mass, spin, and absolute 
value of the baryon number, and the diagonal quantum 
numbers p, 11.,11 b ,b corresponding to momentum, 
helicity, and the intrinsic parity associated with the 
charge state b within the baryon number doublet 
labeled by I B I. The transformation properties of 
basis states are readily computed by knowing how the 
wave functions transform. For example, 

V(e)lX> = '6f~V(e)1,l;(b)cp,\(p)l(m,J, IBI]p,lI.,lIb,b) 
b,A 

= ~ f d;P tJ;(n - b )CfA(P) I [m, J, IB I ]p,)., lIb' b) 
b.A 

= '6 Jd;PtJ;(bl)(/JA(P) I [m,J, IBI]p,).,17 n _b"n - h') 
IY,'\ (18) 

implies V(e)l[m,J, IBI]p,).,17 o,b)= l[m,J, IBI] 
p, A, 11 n-b , n - b). The relation of 11 b to 1/ n-b may be 
determined by evaluating 

V(1T) I x) = ~ r~V(1T)tJ;(b )CPA(P) I [m, J, IB I]p, A, 11b, b) 
b,A 

:::: '£ Jd~P(_ l)J[11tJ;(B)cp _,\(- p) I[m ,J, IB I] 
'A. 

X p, A, lIB' B) + gi(e, 1T)1/ 1/l(n - B)cp_,\(- p) 

xl[m,J, IBI]p,A,11 n_B,n -B)]== '£Ja;p 
b.'\ 

xlJ;(b)(/J,\(P)V(1T)I[m,J,IBI]p,A,1/b,b). (19) 
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This requires V('IT) I [m, J, IBI]p,~"'1b,b) = 1Jb(- l)J 
Irm,J, IBI1-p,-~,1Jb,b),where1JB=1J, 1J n-B= 
gi(C, 'IT)1J. Thus representations corresponding to g 1 

and g 2 (g 3 and g 4) require states of baryon number B 
and n - B to have the same (opposite) intrinsic parity. 
Since it is known physically that V('/T)V(C) = (- 1)2J 
V( C) V( 'IT), one must choose g 1 or g 2 for boson and g 3 
or g 4 for fermion particle representations. Clearly, 
charge conjugation relates charge states Band n - B 
in this construction; the usual charge conjugation 
transformation corresponds to the special case when 
n is taken to be zero. By the same procedure used 
above, one finds V(e,a,A)I[m,J, IBI]p,~,1Jb,b) = 
eib/l e iAP ' aEA'~{A(P, A) I [m, J, IB I ]Ap,~', 1Jb' b), where 
(p, A) == Ac(Ap)AA-;l(p) for A-;1(pfp = P is a Wigner 
rotation. 

There remains only the problem of adding time re­
versal. To do this, Theorem 4. 2 of Parthasarathy8 is 
used; one finds 

u(e,r,a,A,s) 

(

v(e,r,a,.i\,s) 0 \ 

= 0 y(g)KV(-e,r,t(a),tAt,S)Kj' 

(
0 KO)' (20) U(t) = 

OlK 

where V for g E G+ is as above, K is the complex 
conjugation operator, and y(g) == a(t,g)'U(tg, t)/a(t, t) 
has values over r, s. 

s e 'IT r 

e 

C (21) 

U acts on basis functions of the form 

(22) 

and is, in general, reducible. In order to determine 
under what conditions U is redUCible, consider 
F>..(t Aet) = B>..,AH,F>../(Ae). If A exists, U is clearly 
reducible since either manifold labeled by Ae or 
tAet is invariant under all transformations belonging 
to G. Suppose A exists; it is easily seen that A must 
satisfy .A2 = Ol, A VgA -1 = y(g)V t( l..!.or all g E G+ . 
This implies ADJ(R )A-1 = y (r, /)DJ(R) for all r, S ,R 
which-.!equires y(r,s) = 1 andA H , = (- 1)J+>"o>..._>..,.9 
ThenA2 = (_1)2J= Ol = (3 andgi(C,t) = 1. 

Therefore, in order that the representation space not 
double under time reversal,gi must be taken to be g 1 

or g 3' This means g 1 is the proper choice for integer 
spin systems and g 3 for half-integer spin systems 
due to the UIfUC = (- 1)2JUc UIf relation. Notice that 
setting Ol = (3 = (- 1)2J is the usual choice made for 
w(xv x 2 ).5 With this choice of multiplier it follows 
that Uc;t = 1 for all values of spin. It is unclear what 
phYSical Significance an additional degeneracy due to 
time reversal would have. 

As before, wavefunctions may be defined as ~(r)F>..(Ae) 

=¥t(b )q>>..(p); F>..(tAJ) is found to be (- l)>"q>>..(- p) in a 
helicity basis and one finds U(t)1 [m, J, I B 1]P,~, 1J b' b) 
= (-l)>"I[m,J, IBI]-p,~,1Jb,b). . 

4. CONCLUSION 

This work has been concerned with studying the poss­
ible group theoretic means of relating internal to 
space-time symmetries using the Lee and Wick3 

ansatz as a working basis for constructing exten­
sions and their projective representations. It was 
found that the group extension approach leading to 
vector representations has been quite thoroughly in­
vestigated by Michell and Kamber and Straumann, 2 
for the case of the usual internal symmetry groups 
one encounters in strong interaction physiCS. Al­
though relations such as (- 1)2J+B = 1 emerge from 
such a treatment, it is found that the very limited 
ability of the space-time elements to act on internal 
symmetry elements due to charge invariance re­
quirements severely restricts the number and com­
plexity of nontrivial over-all symmetry groups poss­
ible. In particular, there seems to be no physically 
meaningful way of introducing actions either through 
automorphisms or group multipliers of the connected 
Poincare group elements on the internal symmetry 
groups. Also, the actions that do occur, generated by 
time reversal elements, only lead to automorphisms 
acting on or multipliers having values in the centers 
of the internal symmetry groups. This means, for 
example, that non-Abelian internal symmetry groups 
such as SU(2) cannot be influenced by space-time 
elements except for their "trivial" centers. Thus, it 
would appear that the group extension approach to the 
problem has been pushed about as far as it can be 
without the introduction of a radically new basis for 
understanding the underlying connection between 
space-time and internal symmetries. 

On the other hand, the investigation of the projective 
representations of group extensions using the Mackey 
theory of induced projective representations6 leads 
to definite physical relations and is an area that has 
not yet been thoroughly worked through. It has been 
shown for a particular class of extensions of P by I, 
namely the semidirect product, that representation 
multipliers only connect the discrete space-time 
transformations with the center of I and the discrete 
internal symmetries such as charge conjugation. The 
additional possibilities of finding representation 
multipliers for nontrivial extensions of P by I remain 
to be examined. 

As a specific example, projective representations of 
[U 1 @ z~ @ P were calculated relative to a repre­
sentation multiplier which generates irreducible re­
presentations in which baryon number states Band 
n - B for n an integer are both contained. The 
physical implications of choosing n to be nonzero 
have yet to be investigated. It was found that of the 
sixteen mathematically possible multipliers (for a 
given n), a unique multiplier choice could be made by 
demanding the representations to be consistent with 
the quantum field theory and requiring the representa­
tion space not to double when time reversal invariance 
is imposed. Consistency with field theory is attained 
by requiring the relation UIfUC = (- 1)2JUcU" to hold 
between the operator representatives of space inver­
sion and charge conjugation. Time reversal doubling 
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is prevented by specifying U~ = U~ = (- 1)2J. With 
the multiplier thus fixed, it is found that Udlrt = 1 in 
contrast to the relation U~1rt = (- 1)2J given by Lee 
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Space-time variables are generated as representation labels of an underlying group, the group itself being 
combined with the Poincar~ group in a manner reminiscent of the way in which internal symmetries are com­
bined with the Poincar~ group. After representations of the group are found, a transform is introduced which 
allows one to pass from spinor to Wigner wavefunctions in a boost independent manner, exhibiting clearly the 
spin dependence of the wavefunctions. 

I. INTRODUCTION 

The construction of relativistic covariant position 
operators is a well-known problem. As noted by 
Fleming and others,l one of the main difficulties 
associated with pOSition operators has been the treat­
ment of the time part of the position operator as a 
c-number. Recently, several papers have appeared2 ,3 

which attempt to define covariant position operators 
in a Lie-algebraic sense in which no c -number dis­
tinction is made between the space and time compo­
nents. In these papers, one postulates a Lie algebra 
having certain desirable features, usually justified on 
nonrelativistic or classical relativistic grounds. In 
this paper we wish to justify the construction of posi­
tion operators on a somewhat different basis, and 
then show that our general assumptions lead, in the 
simple case discussed here, to a Lie algebra of the 
same sort and having the same mass spectrum dif­
ficulties as those previously mentioned. 

We would like to start with the following postulates 
for generating a position operator group theoreti­
cally: 

1. The group elements (labeled by afl), whose infinite­
simal operators are the position operators, form an 
invariant subgroup of the over-all symmetry group G. 
This requirement guarantees that a transformations, 
acting on wavefunctions cp(x) will only generate 
phases. The requirement of an invariant subgroup is 
reminiscent of internal symmetries,4 with the im­
portant difference that whereas internal symmetry 
labels seem to be superselected,5 position variables 
are not; the result of this is when, in Sec. III, we go 
from a position to a momentum representation, the 
global a transformations will not merely generate a 
phase but will act as momentum translations. Here 
the point of requiring the a to form an invariant 
subgroup is motivated by the distinction between 
global space-time transformations, such as Poincar~ 
transformations in which both the generators and the 
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transformations themselves are physically meaning­
ful, and" internal" symmetry transformations in 
which only the generators are meaningful and the 
global transformations seem to make no sense physi­
cally. 

2. We also demand that the eigenvalues of the posi­
tion operator ~ transform as x' = Ax + a, so that 
one can associate them with Minkowski space-time 
points. The manner in which this requirement is 
satisfied arises from the orbits generated from 
representations of the "a" subgroup. 

3. Finally, we demand that only positive M2 repre­
sentations of the Poincar~ group appear. In the sim­
ple model we investigate, this third requirement will 
be violated, as it is violated in the other models. 
Basically, the source of difficulty here, as pointed 
out by Noga,6 is the commutator [~,Pv];taking the 
simplest choice for this commutator leads to the 
mass difficulties. 

In the usual investigation of space-time symmetry, 
one begins with the Minkowski space-time manifold 
M on which a bilinear form Txy = (x - y)2 is defined, 
and asks for the group of transformations leaving T 

invariant. This leads to a consideration of the Poin­
car~ group. Here a different viewpoint is suggested 
in which a symmetry group G containing the Poincare 
group is made the starting point. G will be taken to 
be the semidirect product of the Poincar~ group P 
with an abelian group a of four vectors afl' The ele­
ments of a will be seen to play the role of transla­
tions in momentum space. It will be shown that a 
representation multiplier for G can be so chosen that 
the space-time manifold M appears as the represen­
tation labels of a subgroup of G in the same way that 
momentum arises as representation labels of the 
translation subgroup of the Poincare group. 

The advantage of this viewpoint lies in the symmetri­
cal relationship between the generators correspond-
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is prevented by specifying U~ = U~ = (- 1)2J. With 
the multiplier thus fixed, it is found that Udlrt = 1 in 
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Fleming and others,l one of the main difficulties 
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ment of the time part of the position operator as a 
c-number. Recently, several papers have appeared2 ,3 

which attempt to define covariant position operators 
in a Lie-algebraic sense in which no c -number dis­
tinction is made between the space and time compo­
nents. In these papers, one postulates a Lie algebra 
having certain desirable features, usually justified on 
nonrelativistic or classical relativistic grounds. In 
this paper we wish to justify the construction of posi­
tion operators on a somewhat different basis, and 
then show that our general assumptions lead, in the 
simple case discussed here, to a Lie algebra of the 
same sort and having the same mass spectrum dif­
ficulties as those previously mentioned. 

We would like to start with the following postulates 
for generating a position operator group theoreti­
cally: 

1. The group elements (labeled by afl), whose infinite­
simal operators are the position operators, form an 
invariant subgroup of the over-all symmetry group G. 
This requirement guarantees that a transformations, 
acting on wavefunctions cp(x) will only generate 
phases. The requirement of an invariant subgroup is 
reminiscent of internal symmetries,4 with the im­
portant difference that whereas internal symmetry 
labels seem to be superselected,5 position variables 
are not; the result of this is when, in Sec. III, we go 
from a position to a momentum representation, the 
global a transformations will not merely generate a 
phase but will act as momentum translations. Here 
the point of requiring the a to form an invariant 
subgroup is motivated by the distinction between 
global space-time transformations, such as Poincar~ 
transformations in which both the generators and the 
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transformations themselves are physically meaning­
ful, and" internal" symmetry transformations in 
which only the generators are meaningful and the 
global transformations seem to make no sense physi­
cally. 

2. We also demand that the eigenvalues of the posi­
tion operator ~ transform as x' = Ax + a, so that 
one can associate them with Minkowski space-time 
points. The manner in which this requirement is 
satisfied arises from the orbits generated from 
representations of the "a" subgroup. 

3. Finally, we demand that only positive M2 repre­
sentations of the Poincar~ group appear. In the sim­
ple model we investigate, this third requirement will 
be violated, as it is violated in the other models. 
Basically, the source of difficulty here, as pointed 
out by Noga,6 is the commutator [~,Pv];taking the 
simplest choice for this commutator leads to the 
mass difficulties. 

In the usual investigation of space-time symmetry, 
one begins with the Minkowski space-time manifold 
M on which a bilinear form Txy = (x - y)2 is defined, 
and asks for the group of transformations leaving T 

invariant. This leads to a consideration of the Poin­
car~ group. Here a different viewpoint is suggested 
in which a symmetry group G containing the Poincare 
group is made the starting point. G will be taken to 
be the semidirect product of the Poincar~ group P 
with an abelian group a of four vectors afl' The ele­
ments of a will be seen to play the role of transla­
tions in momentum space. It will be shown that a 
representation multiplier for G can be so chosen that 
the space-time manifold M appears as the represen­
tation labels of a subgroup of G in the same way that 
momentum arises as representation labels of the 
translation subgroup of the Poincare group. 

The advantage of this viewpoint lies in the symmetri­
cal relationship between the generators correspond-
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ing to position and momentum which arises; it will 
be seen that the representation multiplier, besides 
leading to a physically reasonable appearance of the 
space-time manifold as representation labels of <:!., 
is also responsible for generating the commutation 
relations between the position and momentum gene­
rators. On the one hand, this approach is closely re­
lated to the work of Johnson,2 who defined pOSition 
operators by forming an extension of the Poincare 
algebra by the position elements x;, and found repre­
sentations of this extension by unitary operators act­
ing on linear vector spaces. 

On the other hand, the approach used here is quite 
similar to the procedure used in a previous investi­
gation4 for relating space-time to internal sym­
metries by finding projective representations of group 
extensions of the Poincare group by an internal sym­
metry group. In this case the "internal" symmetry 
group is <:!. and G/<:!. = P. As in this previous study, 
the work here depends heavily on the Mackey7 theory 
of induced projective representations of group exten­
sions. A brief summary of some of the results of this 
theory used here can be found in Ref. 4; however, the 
original Mackey paper should be consulted for any­
thing more than a superficial discussion of the mathe­
matical basis of this analysis. 

In Sec. II projective representations of G are found 
using the Mackey theory. It is found that these re­
presentations are a global extension of those deter­
mined by Johnson by splitting his extended algebra 
into the Heisenberg and Lorentz algebras; the work 
here proceeds directly in terms of the groups them­
selves and not their associated algebras. The repre­
sentations are defined on configuration space basis 
functions and state vectors and constitute a generali­
zation to arbitrary Lorentz group representation 
labels of the single spin covariant representations 
found by Weinberg. s 

In order to make contact with the usual noncovariant 
Poincare group representations of Wigner, 9 the 
Poincare representational content of an irreducible 
representation of G is determined in Sec. ill using 
Mackey's subgroup theorem. It is discovered that 
irreducible representations of G have a continuous 
mass content (as they must because of the O'Raifear­
taigh10 theorem) and that representations in which 
space-time variables are diagonal are necessarily 
indeterminant in mass so that physically meaningful 
states must have a finite extension in configuration 
space. 

Therefore, in suggesting a new way in which space 
and time arise, namely from a more fundamental 
underlying symmetry, it is possible to derive group 
theoretically the connection between spinor wave­
functions and Wigner wavefunctions even for infinite 
component fields. This is done within the context of 
projective representations of a group which com­
bines in a Simple manner the usual Poincare trans­
formations with momentum space translations gene­
rated by position operators. The relation between the 
position operators and the Poincare algebra implied 
by our choice of G, while appearing to be the simplest 
choice consistent with the Heisenberg commutation 
relations, leads to the appearance of unphysical mass 
states and thus indicates the need for external con­
straints or a more complicated choice of G. 

II. PROJECTIVE REPRESENTATIONS OF G 

Consider the group G :::: a @ P with elements g :::: 
(a, a, A, 1T), where a E a, (a, A) E po. the connected 
Poincare group, and 1T E Zi, the space inversion group. 
P is taken to include space inversion in order to ob­
tain spinor representations; for example, the Dirac 
spinors for spin i particles are necessarily four 
component objects due to the requirement of space 
inversion invariance. G has the combination law 

glg2 0::= (a 1 + A l 1T 1(a 2),a1 + AI1Ti(a2),AI1T1A21T1>1TI1T2)' 

(1) 

Elements a E a are four vectors which behave under 
automorphisms induced by P exactly as the trans­
lations a do. 

The goal here is the construction of multiplier repre­
sentations of G; that is we want a unitary repre'senta­
tion of G such that 

(2) 

for all g l,g 2 belonging to G. A multiplier (J for G is 
given by 

(3) 

By evaluating 

UgI Ug Pg3 as [UgI Ug)Ug3 and UgI [Ug2 Ug3 ], 

it is easily checked that (J is, in fact, a multiplier of G. 
Multiplier representations for G are determined using 
Mackey's7 theory of induced projective representa­
tions of group extensions. Representations of G are 
found by first finding representations of a normal 
subgroup of G. Take this to be a. <:!. has irreducible 
representations labeled by a four vector, xo• 

The orbit of xOLa l is found by finding all nonequiva­
lent representations xLa' as4 

where g = (a,a,A, 1T). Thus x = 1TA-l(xo - a} and 
there is a one-to-one correspondence between trans­
lations a and the representation labels x. Thus two 
space-time points x and x' are related by x' = Ax 
+ a in accordance with the second postulate; this is 
the justification for calling x a space-time point. If 
the standard vector Xo is taken to be the null vector, 
the inducing subgroup R is found to be 

R 0::= <:!. @ [8L(2, C) @ Z~]. (5) 

(J representations of R are found in the Mackey theory 
by first finding all multiplier representations of 
H/<:!. 0::= SL(2, C) @ Z~. There are only vector repre­
sentations of R/a and these are given in terms of 
irreducible representations DS

I
s 2(A) of SL(2, C)ll by 
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(D~S2(A) N(A, e) = 
o N(e,~) =(~ ~). 

(6) 

This representation is reducible if and only if s 1 = S 2' 
o representations of H are now given by N ® M, where 
M is a 0 representation of H which reduces to I on (t. 

Due to the choice of standard vector xo, 

M(a,A, rr)= e ixo
•

Ct
I1\,1T, (7) ., 

where 11\,11 is the identity representation of SL(2, C) 
@ Z~ will work. The induced representation over 
right-coset representatives taken to be the trans­
lations a is 

U(a, a, A, ~)Fo(ao) 

= o(ao, (a, a, A, rr» Fa[(O, ao, e, e) (a, a, A, ~)J 

= e iCt
' i1oFa [(a, 0, A, rr) (0, rrA -l(a + ao), e, e)] 

= e ia
•ao E N~s~,(A, rr)Fo '[ rrA -l(a + ao)]' (8) 

0' 

Due to the one-to-one correspondence between x and 
a, one may define representations over functions 
'Po (x ) = 'Po (x ° + ao) == ~ (a o) as 

U(a, a, A, rr)'Po(x) = e ia
.
x E Nd~2, (A, ~)'Po,(rrA -l(x + a». 

a' (9) 

This is the desired representation over configuration 
space-wave functions. Representations defined on 
(nonnormalizable) state vectors may be found by sett­
ing 

I 'P) = L; I d4X'Pa(x) I [SI S 2Jx,0), (10) 
o 

where the vector I [sl s2]x,0) is hlbeled by the irre­
ducible representation labels (sl' s2) arising from 
representations of the Lorentz group and the diago­
nal quantum numbers x, 0 representing the position 
four vector and the (s v s 2) representation component. 

Then 

U(a, a, A, rr) I 'P> 

= L; Jd4xU(a, a, A,rr)'Po (x) l[sI S 2]x,o) 
a 

= L; Jd4xeia.xL;N~1~2, (A,s)'Pa,[rrA-l(x -a)] 
a a' 

XI[SV S2]x,O) 

= E J d 4x' e ia .(A1Tx'+a)L; Naa,(A, rr)'Pa'(x') 
0' 0 

(11) 

U(a,a,A, rr) l(sls2Jx, a) 

= eia'(A1Tx+a)LJN~;~ (A, rr) I [sls 2]Arrx + a, (J'). 
0' 

(12) 

Define the Hermitian operators PI' and x;.. by setting 

U(a) = e iP.Q, Uta) = e iX.",. (13) 

The relation 

U(a)U(a) = eia.aU(a)U(a) (14) 
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then implies 

(15) 

These are the commutation relations between PI' and 
x;.., regarded now as a position operator, postulated by 
Johnson.2 However, as mentioned in the introduction 
it has been shown by Johnson2 and Noga6 that repre­
sentations determined relative to these commutation 
relations result in the appearance of unphysical 
masses so that the algebra of G cannot be regarded 
as a physically valid combination of position and the 
Poincare observables. 

Clearly, the representation above coincides with the 
transformation law for Dirac spinors by choosing 
(sl' s2) = (t 0), since D1I2,0(rrArr) ~ DO,1I2(A) making 
N1I2,0(A, e) into the usual SeA) matrix of the Dirac 
theory. 12 In this way one obtains group theoretically 
a representation of a group containing the Poincare 
group whose basis states transform covariantly in 
contrast to the usual Poincare states which trans­
form in a way that depends on the momentum vari­
able. 9 As noted by Weinberg8 and others,13 covari­
antly transforming Poincare states are essential to 
the construction of Poincare invariant S-matrix ele­
ments. 

The representation just constructed is a global ex­
pression of the algebraic representation found by 
Johnson2 by postulating an extension of the Poincare 
algebra by ~ such that [PI" XII J = iglJv is satisfied. 
The irredUCIble Poincare content (Le., mass and spin 
content) of this representation as well as the conse­
quences of taking a ~ 0 will be examined in the next 
section. 

m. POINCARE CONTENT OF REPRESENTATIONS 
OFG 

We now wish to make the connection between the 
representations of G and the Poincare group. For 
simplicity only the connected part of P,Po will be 
considered. To do this Mackey's subgroup theorem14 
will be used to examine the breakup of representa­
tions of G into subspaces invariant with respect to 
transformations of the Poincare group. This is done 
by making a double coset decomposition of G with 
respect to H = (t @ SL(2, C), the inducing subgroup of 
G,andH' =Po, 

(16) 

where gD is a double coset representative. It is easy 
to see that there is only one double coset so gD can 
be taken to be the identity. This indicates that the 
representation spaces of Po and G coincide. The 
group inducing representations of P Q within this rep­
resentation space is found to be SL(2, C). Since 
SL(2, C) will induce redUCible representations of Po 
in general, the problem is to find the irreducible 
Poincare content of representations of G. The repre­
sentation labels of G are just the SL(2, C) labels 
(sl,s2) while Po representations are specified by 
(M, J), the mass and spin. Since irreducible repre­
sentations of Po are induced by T @ SU(2), basis func­
tions over right coset elements A~4,jo(Ac)' trans­
forming irreducibly under induced representations of 
Po must have the property!(hAC> = X(h)!(Ac )' where 



                                                                                                                                    

P 0 SIT ION 0 PER A TOR S A S "I N T ERN A L" S Y M MET R I E S 315 

JC{h) is a representation of T @ SU(2). Basis func­
tions defined over the translations F(a) of represen­
tations of Po induced by SL(2. C) must likewise have 
the property F(Aa) = D Sl"2(A)F(a). It can be seen 
that the transform given by Hermann, 15 

relates f and F in a manner consistent with the above 
requirements. This is done by noting that d 4adR is 
defined to be an invariant measure over the group 
manifold T @ SU(2), so that 

f(h'Ac) = J dhJC(h- 1 )F(hh'AJ 

= J dhIJC(h'hl-l)F(h" Ac) 

= JC(h')f(Ac)' (18) 

The reducible representation JC is taken to be JC(a, R) 
= eiP·aDs·h(R), wherep is (tf)for M "'- 0 represen­
tations. Then 

(19) 

~J'm,(A~lp) is just a Fourier transform to momentum 
variables of the basis function over configuration 
space corresponding to an arbitrary mass M arising 
fromp. Identifying fJm(AC> as cp;,(BIp)p) = CP~,Ip), a 
Wigner basis function of spin J, mass M, where BIp) 
is an arbitrary boost from the rest frame momentum 
p to momentum P such that BIp)p = P and is equiva­
lent to the coset representative A~l, leads to the re­
lation 

(20) 

This demonstrates the Poincare spin content of an 
irreducible representation of G labeled by (s l' s 2) 
and is a generalization to an arbitrary SL(2, C) rep­
resentation of the relation obtained by Weinberg 8 for 
the (s, 0) case. 

Using the transform above it is easy to compute the 
action of U(a) on CPJ;!,.JIpM)' the Wigner9 basis function 
of mass M, spin J. The result is 

U(a)cpJ;!,·JIpM) 

= I; D~~;J'm,[(BIpM)-lBIpM + a)] cpJ;!,;.J' IpM')' (21) 
J'.m' 

where PM= A~lPM' PM' = A~lf>M + a = A;;lPM" Thus 
the irreducible representation space of G for a given 
(Sl' S2) is a reducible representation space of Po hav­
ing a continuous mass content and a spin content 
dependent on (Sl' s2)' 

The action of U(a) on basis states i[sls2]x,o-) re­
flects the observation of Johnson2 and others on the 
lack of localizability of mass eigenstates; 

(22) 

implies that a sharply localized state is physically 
unchanged by a transformation which changes its 
mass. Therefore, states sharp in x have a complete 
ambiguity in mass. There is, besides the appearance 
of a continuum of masses, the more serious problem 
of the appearance of negative and imaginary masses 
since M2 is unrestricted. This undesirable feature 
limits the physically sensible representation spec­
trum of G to only a subset of those representations 
allowed, mathematically. From the set of wavefunc­
tions l/I~~2 (x) having continuously varying mass, one 
can select a particular mass wavefunction trans­
forming according to Eq. (9) with a = 0 by applying 
the Klein-Gordon operator 0 2 - M2, 

(02 - M2) l/I~~,z(x) = o. (23) 

Adding on the Klein-Gordon operator does away with 
the unphysical masses which arise, but at the cost of 
breaking the group symmetry. However, the Klein­
Gordon constraint allows one to use the transform 
between spinor states and Wigner wavefunctions for 
completely arbitrary internal spin and arbitrary 
boosting operation, in contrast to transforms which 
are often given only for a specific spin content. 

IV. CONCLUSION 

The point of view adopted here of postulating an 
underlying symmetry group G in which space-time 
appears as representation labels leads to several 
interesting results. When projective representations 
are calculated relative to a multiplier chosen so as 
to lead to all space-time points appearing as repre­
sentation labels of a subgroup of G, it is found that 
the commutation relations [P/J' Xv] = ig/JII between the 
position and momentum operators in the Lie algebra 
of G are automatically satisfied. Furthermore, it is 
found that the representations of G on wavefunctions 
that are defined over position coordinates have the 
same transformation properties as the usual covariant 
spinor representations one associates with the solu­
tions of the Klein-Gordon or Dirac equations. Finally, 
using Mackey's subgroup theorem, the connection be­
tween the spinor representations of G and the usual 
noncovariant Poincare group representations was 
established as a relation independent of the choice of 
boost made. It is found that the representations of G 
have a continuous mass spectrum and that within the 
context of the symmetry group G, sharp localization 
in space-time requires a complete indeterminacy in 
mass so that physical states of a well defined mass 
must have a nonzero extension in space-time. The 
appearance of unphysical masses in the representa­
tion spectrum of G requires that one only consider a 
subset of the mathematically possible representa­
tions. Particular mass states may be selected from 
the continuum by applying the Klein-Gordon operator 
as a constraint on the representation space. Finally, 
the group elements a were interpreted Simply as 
translating the momentum. There has been work 
done in the last few years16 in attempting to extend 
the applicability of the Poincare group to include 
symmetries in the presence of electromagnetic fields. 
It is hoped that the approach indicated here of con­
structing projective representations of extensions of 
the Poincare group using the Mackey theory7 can be 
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widened to include extensions by an arbitrary func­
tion of space-time C\'11 (x), that has vector transforma­
tion properties under the Poincare group. Interpret­
ing C\'11 (x), then, as the electromagnetic potential would 
open up possibilities for investigating group theoreti­
cally subject areas closely related to the work of 
Yang and Mills17 on space-time dependent gauge 
transformations. 
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A statistical study of the correlations of the complex poles of the unitary collision matrix is carried out. It 
is shown that both for the elastic and the inelastic scattering the correlation coefficient of the two total widths 
is always very small. A simple relation satisfied by the correlation coefficient of the real parts of the com­
plex poles is given. The distribution of the single width is calculated and compared with the Porter-Thomas 
distribution and the one obtained by a numerical calculation. Some other interesting results, like the energy 
correlation function for the purely elastic scattering cross section and a relation satisfied by the resonance 
parameters for the fluctuation calculation, are also given. 

I. INTRODUCTION 

In the last couple of years there has been consider­
able interest in the problem of overlapping reson­
ances. This interest arises due to the study of Eric­
son's fluctuations,l intermediate structure 2 ,3 and the 
other low energy nuclear reactions, which pass 
through the formation of a compound nucleus, in which 
the compound nucleus resonances are not well sepa­
rated. The main difficulty which arises when the re­
sonances start interfering is that the parameters of 
the scattering matrix do not remain independent be­
cause of the unitarity constraint. Even though a num­
ber of models have been constructed recently which 
satisfy the unitarity constraint, not much work has 
been done so far as the statistical study of the reson­
ance parameters of the interfering resonances is 
concerned. Such work is needed, e.g., when one has 
either to average over the resonance parameters of 
the scattering matrix 3 or to justify certain of the 
statistical assumptions which are used in the evalua­
tion of the expressions for the average of the cross 
section and its fluctuation around the mean. I 

For the purely elastic scattering case, a generalized 
distribution of the poles of the unitary scattering 
function has been given recently,4 which can be used 
to study the important correlations between the re­
sonance parameters. The same is not true when 
more than one channel is open, since the correspond-
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ing multichannel distribution for the poles of the 
unitary scattering matrix is not at all easy to work 
out. In this paper, we would like to show that a num­
ber of identities can be exploited to study the statist­
ical correlations for the multichannel case, without 
going into the problem of the multichannel distribu­
tion of the poles of the unitary scattering matrix. To 
check our results and to show what kind of new cor­
relations arise when the resonances are not isolated, 
we shall compare them with the well-known para­
meters of the R-matrix theory.5,6 Some of these re­
sults will also be compared with the ones which have 
been obtained by Moldauer 7 using numerical calcula­
tions. 

We describe the general formulation in Sec.I1. In Sec. 
m we study the statistical properties of the reson­
ance parameters for the purely elastic scattering 
case. The multichannel results are presented in Sec. 
V. 

n. GENERAL FORMULATION 

It has been shown recently8 that the unitary scatter­
ing matrix S, based on R-matrix theory 9 or Fesh­
bach's unified theory,IO can always be written in the 
form 

(la) 
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I. INTRODUCTION 

In the last couple of years there has been consider­
able interest in the problem of overlapping reson­
ances. This interest arises due to the study of Eric­
son's fluctuations,l intermediate structure 2 ,3 and the 
other low energy nuclear reactions, which pass 
through the formation of a compound nucleus, in which 
the compound nucleus resonances are not well sepa­
rated. The main difficulty which arises when the re­
sonances start interfering is that the parameters of 
the scattering matrix do not remain independent be­
cause of the unitarity constraint. Even though a num­
ber of models have been constructed recently which 
satisfy the unitarity constraint, not much work has 
been done so far as the statistical study of the reson­
ance parameters of the interfering resonances is 
concerned. Such work is needed, e.g., when one has 
either to average over the resonance parameters of 
the scattering matrix 3 or to justify certain of the 
statistical assumptions which are used in the evalua­
tion of the expressions for the average of the cross 
section and its fluctuation around the mean. I 

For the purely elastic scattering case, a generalized 
distribution of the poles of the unitary scattering 
function has been given recently,4 which can be used 
to study the important correlations between the re­
sonance parameters. The same is not true when 
more than one channel is open, since the correspond-
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ing multichannel distribution for the poles of the 
unitary scattering matrix is not at all easy to work 
out. In this paper, we would like to show that a num­
ber of identities can be exploited to study the statist­
ical correlations for the multichannel case, without 
going into the problem of the multichannel distribu­
tion of the poles of the unitary scattering matrix. To 
check our results and to show what kind of new cor­
relations arise when the resonances are not isolated, 
we shall compare them with the well-known para­
meters of the R-matrix theory.5,6 Some of these re­
sults will also be compared with the ones which have 
been obtained by Moldauer 7 using numerical calcula­
tions. 

We describe the general formulation in Sec.I1. In Sec. 
m we study the statistical properties of the reson­
ance parameters for the purely elastic scattering 
case. The multichannel results are presented in Sec. 
V. 

n. GENERAL FORMULATION 

It has been shown recently8 that the unitary scatter­
ing matrix S, based on R-matrix theory 9 or Fesh­
bach's unified theory,IO can always be written in the 
form 

(la) 
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where V is a unitary and symmetric matrix which 
gives rise to the background scattering,XA is a real 
vector in channel space, and N is the number of re­
sonances. The matrix elements A Ail of the level 
matrix are given by 

(1b) 

where the E A are the real eigenvalues of the com­
pound nucleus Hamiltonian and (X A,Xjl) denotes the 
scalar product of the vectors X A and x il in the chan­
nel space. 

The form of the unitary scattering matrix S given by 
expression (1) involves the inversion of the level 
matrix and is, therefore, suitable if the number of re­
sonances are small. If the number of resonances are 
large but the number of channels is small, then the 
channel inversion form is suitable. This form of S 
can be written in the usual way as 

S = V(l - MK) (1 + hK)-1V, (2a) 

where the real-symmetric matrix K is of the form 

K = t X A X X A , (2b) 
1..=1 E-EA 

which is similar to the one given by Feshbach.10 

The pole resonance form of the scattering matrix S 
is given by 

( 
NGXG) S=V1-iL) A AV 

1..=1 E - Z A 
(3) 

where the Z A are the complex poles, Z A = E A - ~ r A' 
and G A is a complex vector in the channel space. 
Comparing expression (3) with either expression (la) 
or (2a), we can write the relations between the com­
plex resonance parameters Z A' G A of the scattering 
matrix S and the real parameters E A' X A of the R -
matrix theory. Since the statistical properties of the 
real R -matrix theory have been very well studied, 6 

these relations can be used to study the statistical 
properties of the new resonance parameters ZA' GA. 
We first conSider the purely elastic scattering case 
in the next section. 

ID. ELASTIC SCATTERING 

For the purely elastic scattering case the relations 
between the complex poles Z A and the real para­
meters X A' E A are given by the following identity in E: 

N N N N 
IT (E-ZA)= IT (E-EA)+tiL) X; ~(E-EA). (4a) 

1..=1 1..=1 11=1 ATjI 

In order to satisfy unitarity the complex quantities 
G X are given by 

(4b) 

Since we are dealing with the single-channel case 
here, we have dropped the channel index c from the 
amplitudes XA,GA in the above expressions. Expres­
sion (4b) has also been given by Mahaux and Weiden­
mUller .11 Before we study the statistical properties 
of the resonance parameters ZA' GA, we choose a suit­
able boundary condition 9 Re[LO(1 - R 0 LO)-1] = 0 in 
R-matrix theory, which allows us to use the same 
statistical properties for EA,XA as have been given 

earlier. 5 ,6 The case when a different boundary con­
dition is used will not be discussed here, but can be 
worked out without much difficulty using the general­
ized distribution given in Ref. 4. In the following sub­
section we study the correlation coefficients of the 
new resonance parameters. 

A. Correlation Coefficients 

To study the correlation coefficients, we write the 
following relations, which are easily obtained using 
the identity (4): 

(5a) 

N N 

L) rfl = 6 X2, 
1'=1 fJ=1 I' 

(5b) 

N N 

6(E il EA - trJ.l rAj =6E
il

EA, 
J.I<A 1'<1.. 

(5c) 

N N (N ) 6 (EfJ r A + EArI') =6 Xt 6 EA· 
f1<A J.I=1 k:1I 

(5d) 

The correlation coefficient C rfl, rA between two widths 
rJ.l' r A is defined by 

Crll,rA = «rllr A> - (rll>2)/«r~> - (rll >2), 

where the bracket sign ( > denotes an ensemble aver­
age. 

Taking the ensemble average of Eq. (5b) and its 
square, we get 

(r ll > = (X~>, (6a) 

(r~> + (N -l)(rll r A>1I1A= (xt> + (N -1)(X~X~>II*A. 

(6b) 

The ensemble averages of the real amplitudes X are 
given by12 II 

(xt> = 3N(N + 2)-1 (XP2, 

(X~XVJ.l1A =N(N+ 2)-I(X~>2. 

(7a) 

(7b) 

Putting in these ensemble averages in Eqs. (6) and 
using the definition of the correlation c'oefficient, we 
find that the width-width correlation coefficient is 
given by 

(8) 

Since N is large in practice, we find that the width­
width correlation is quite weak even when the reson­
ances start overlapping. 

We next consider the correlation coefficient between 
r II and Ell. Multiplying expressions (5a), (5b) together 
and substracting out (5d) from it, we find the follow­
ing relation between the ensemble averages of the 
two sets of resonance parameters: 

(EfJrfl> = (EIl><Xt> , 

This relation together with (5a), (5b) implies that the 
correlation coefficient of E J.l' rfl is zero. Even though 
the correlation coefficient of Ell' r J.l turns out to be 
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zero, the same is not true for the correlations of the 
higher powers of fp,' r II' This is reflected in the fact 
that the joint distrIbutlOn of the quantities E", r" is 
not an independent distribution with respect to each 
other.4 This is a major difference between the dis­
tribution of the resonance parameters of the scatter­
ing function S and of the real parameters E ,X of 
R-matrix theory, which are always independent with 
respect to each other. 13 

A similar calculation can also be carried out for the 
correlation coefficient of E

IJ
, EA' But it turns out that 

the relations (5) are not sufficient for this calcula­
tion. We need further relations which are provided 
by identity (4), or alternatively we can use the joint 
distribution4 of E", r" to calculate the ensemble 
averages of the product quantities E" EA' Unfortunate­
ly, no simple closed-form expressions can be obtain­
ed for these ensemble averages unless some approxi­
mations are made. Instead of these approximate 
expressions, we give here an exact relation satisfied 
by the correlation coefficient C€ €,' To do this, we ", "-

take the distribution of the real eigenvalues E" to be 
Wishart distribution 13 

P(E1 ,E 2" •• ,EN) 

= K( n 1 E" - EA I) ex/- (4a2)-1 ~ E~), (9) 
,,<A \ ,,=1 

where K is the normalization constant and a2 is the 
mean-square dispersion of the off-diagonal matrix 
elements of the compound-nucleus Hamiltonian. 

Using expressions (5a), (9), we get 

C€ € = -l/(N -1) + [2a2 /(N- 1) (E~)]. (lOa) 
", A 

The parameter a2 can be eliminated using the rela­
tions (5) and expression (9). If this elimination is 
carried out, we get the following exact relation satis­
fied by the correlation coefficient CE", €A: 

1 1 -----
N + 1 2 (N - l)(N + 1) 

(r2) - (r )2 1 (r fJ)2 
x "(E~) " + 2(N + 1) (EP' (lOb) 

We see from expression (lOb) that if the resonances 
are isolated, then the correlation coefficient CE" ,E A 
becomes 

(lOc) 

which is just the correlation coefficient of two real 
eigenvalues E",EA,as it should be. 

B. Distribution of The Single Width 

The joint distribution of the complex poles Z" is given 
by4 

Pr!f r})ndf dr = Kf1(l-2S ~)(n r )_1/2 
~ 1"1' I' 1'1' 1'=1 N <Xff> I' I' 

X ~ exp [- (sa2)-\RA r!JrA)] f(exp[ - (4a
2

)-1 Pf~) 
(E ~ EA)2 + ·Hr" - r~)2 

x n I' 
!J<A [(f!J - EA)2 + ~ (r!J + rA)2]1/2 
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where K is the normalization constant. In writing 
expression (11) we have taken the distribution of the 
real eigenvalues EjJ to be given by expression (9) and 
the distribution of the real amplitudes X" to be the 
one given in Ref. 12. 

One important characteristic of a statistical distribu­
tion is the mean-square deviation or dispersion. We 
shall now show that the dispersion of the width rjJ is 
larger than the dispersion of the quantity X~, WhICh 
is the corresponding width in R matrix. To show 
this, we make the following approximation in expres­
sion (11). We write the term 

n (f!J - EA)2 + i (r" - r A)2 

,,<A [(E!J - fA)2 + Hr!J + rA)2]1!2' 
as 

r"r A ) 

- EA)2 + i(rfJ + r A)2 

X(l + ~ (r fJ - r A)2)J1
/2 

(E" - EA)2 

and expand the quantities in square brackets by the 
binomial theorem. Keeping only the first term in the 
above expansion, we can write the unnormalized dis­
tribution of the widths as 

p(r )f1dr = (1- :6
r

" )(ll r )-1/2 
""I' N{Xff) " fJ 

X (exp[ - (8a2)-1 fJ'§ r fJ r "J)r drfJ' (12) 

For large values of N, the parameter a2 can be re­
lated to the average spacing d of the poles of the R 
matrix using Wigner's semi-circle law. 14 It is given 
by 

(13) 

To calculate the mean-square deviation of the width 
r ,we put the value of a2 in expression (12), expand 
tlie exponential and carry out the integrations over 
rfJ' This gives us 

(r~) -(r!J)2 3N 

(r,,) 2 N+ 1 

x (1 + aN(3N + 32)/(N + 4)(N + 6)) _ 1, (14a) 

1 + 3aN/(N + 2) 

where the parameter a = n2{X~) 2/16d2 • 

The mean-square deviation of the square of the ampli­
tude XI' using Eq. (17a) is given by 

«Xi) - <X~)2)/<X ~)2 = 2[(N - l)/(N + 2)]. (14b) 

A comparison of Eqs. (14a) and (14b) shows that the 
width r has a larger mean-square deviation than the 
square 6f the amplitude X . This was also found to be 
the case for the model in t..hich only two resonances 
were considered,15 but no approximations had to be 
made to carry out the integrations over the variables 
E", rfJ' 
Using the same approximations, we can also calculate 
the distribution of a single width r . We would like 
to compare this distribution with the one obtained 
numerically by Moldauer. 7 In Moldauer' s numerical 
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calculation the distribution of the amplitudes X)J is 
taken to be an independent Gaussian distribution 
rather than the <'i-function distribution which we have 
used. However, it is known 16 that the <'i -function dis­
tribution gives the same results as the Gaussian dis­
tribution for large N, which is the case discussed 
here. 

After carrying out some simple mathematical mani­
pulations, we find that the distribution of a single 
dimensionless width y = r

ll 
/(r

ll
) is given by 

P(y)dy = K[1- (6a/N)y + (a/N)y 2]y-1/2[exp(- h)]dy, 
(15) 

where K is the normalization constant. This distribu­
tion is plotted in Fig. 1, which also shows Porter­
Thomas (P-T) distribution17 and Moldauer's numeri­
cal histogram. 7 We see from this figure that our curve 
based on expression (15) lies closer to the numerical 
plot than the (P-T) distribution. 

C. Correlation Function for the Elastic Cross Section 

An important quantity in the theory of fluctuations of 
cross sections l is the energy correlation function, 
which is defined by 

F(€) = ([a(E + €) - (a)][a(E)- (am, (16) 

where a(E), a(E + €) are the cross sections at energ­
ies E and E + €, respectively. The elastic cross sec­
tion a(E) is related to the scattering function 5(E) by 
the relation 

a(E) := (7T/k 2) 11 - 5(E) 12 , (17) 

where k is the magnitude of the wave vector. We use 

the following definition of the energy average 2 , 3 of the 
function 5 (E) : 

(5(E» = jOC) 5(E')p(E,E')dE', 
-OC) 

(18) 

where p(E ,E') is the Lorentz weighting function 

p(E,E') = (1/2 7T) [(E- E')2 + tf 2)-l, (19) 

with f = 2LlE/7T. 

Using the definitions (16)-(18), we can write F(E) as 

F(€) := (7T 2 /k 2 )2 ((5(E + €)S*(E» + c.c.) 

- «5(E + E»~ (5*(E» + c. c.»), (20) 

where c.c.denotes the complex conjugate. The energy 
integrals in expression (20) are carried out in the 
usual way 2,3 by going over to the complex E plane, and 
are given by 

(S(E + €)5*(E» + c.c. 
N G 2 N € - Z)J + z}" 

=-iL; )J n 
Jl,,1 E + € + iI/2 - ZfJ >":1 € - ZfJ + Z},,* 

G2 -€-Z+Z 
_ i~ II n II}" 

II E + if /2 - Zil }" - € - ZIl + Z;: 

+c.c.+2, (21) 

(5(E + E» := (exp(- 2iCP)6 - i t G~/ ). 
\' II = 1 E + E + if 2 - ZfJ 

(22) 

Expressions (21) and (22) are exact. As a check,if we 
put E := 0 in expression (21), then we get (IS(E) 12) + 
C.c. := 2, as we should. To simplify expression (21) 

1 PRESENT DISTRIBUTION FOR DIMENSIONLESS WIDTH 'y' 

FIG. 1. A plot of the 
dimensionless width 
y == r/(r" >. Also shown 
are the Porter-Thomas 
di stribution and the 
numerical histogram. 
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further, we make the approximation of expanding the 
product and keeping the first term in in this expan­
sion. The quantity F(E) in this approximation is given 
by 

( ) 
r 

FE - 2 ~ 2 27T II 
()- k2 n<1+E2/r 2)' 

IJ 

(23) 

Expression (23) is similar to the expression for F(E) 
obtained by Ericson I for the total cross section. 

IV. MULTICHANNEL SCATTERING 

We would now like to extend our discussion to m open 
channels. The previous identity in E which gives the 
relations between the new resonance parameters Z A 

and the real eigenvalues EA and the real width ampli­
tudes XAC now becomes 

N n (E - ZA) = det(A-l), (24) 
,\.=1 

where det denotes the determinant of the matrix A-I. 
As in Sec. III, we write the following relations using 
the identity (24): 

N N 

L: Efl =.6 Ell' 
fl=1 11=1 

(25a) 

(25b) 

N 

L;kflr", + E",rll)=.6X~c(.6E,\.). (25d) 
p<), p,c "'t-fl 

As earlier, we choose the boundary condition Re[LO 
(l-ROLO)-I] 0: O,for each channel,and assume the 
constant matrix RO to be diagonal. 

A. Correlation Coefficients 

To calculate the correlation coefficient between two 
widths rjl' r A ,we take the ensemble averages of Eq. 
(25b) and its square. They are given by 

m 

(r
IJ

) 0:.6 (X ;c) , 
c=l 

(26a) 

<r~) + (N - l)(rfl r "') fl1'" 
m 

= B[(x~C> + {N - l)(X~cXrc)pfJ 
c =1 

+ L [(X;cX~c,) + (N - l)(X;cXrc')flf"')' (26b) 
ctc' 

The ensemble averages of the real amplitudes X"c of 
R-matrix theory are given by12 

(xtc) = [3N/(N + 1)1(x~c) 2, (27a) 

(X ~cX~) IJp. = [N /N + 2) ](X;C> 2, (27b) 

<X~CXjJ~>C*C' = [N/{N + 2)1<X}c)(X~c,) (1 + 2 Cl
flc

,x
flc

)' 

(27c) 

<X~cXXc,) 11# = [N(N + 1)/(N - 1)(N + 2) l(X~c) (X~c') 
c#' 

x (1 - 2Cj x), (27d) 
I-1C, I-1C' 
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where Cx x is the correlation coefficient of two 
IJC, pc' 

real amplitudes XIJc. XC" Putting in these ensemble 
averages in expressit~lns (26) and using the definition 
of the correlation coefficent Cr r"" we find that it is 
given by It. 

(28) 

This is the same as the one which we had obtained for 
the purely elastic scattering case. 

In a similar fashion it can be shown, using expression 
(25a) and the distribution given by expression (9), that 

C
EIJ

.,,,, = - 1/(N + 1) + 2u2/W - 1) (E;) . 

Substituting for the value of u2 , which can be obtained 
using the relations (25), (29), and the following ensem­
ble average,12 

(XjJ.cXjJ.c'X",CX",c'> = - [N2/(N - 1)(N + 2)1 

x (X;) (X~c,) (N-l - Cx X ), (29) 
jJ.c, jJ.c' 

we can finally write the correlation coefficient C, , 
as fl. A 

1 1 (r~) - (rjJ. )2 
0:---

N+l 

+ 1 
2(N + 1) 

2(N + l)(N - 1) <E~) 
(r)2 N 1 
--+------
(E~) 2(N - 1)(N + 1) (E~) 

(30) 

This expression differs from the corresponding 
expression (lOb) for the purely elastic case in the 
last term. We see that the last term is nothing but 
the multichannel effect. 

As in the purely elastic case, we find, using expres­
sions (25a), (25b) and (25d) ,that the correlation coef­
ficient of EjJ.,r

IJ 
is zero. 

We have shown that both for the elastic and the in­
elastic scattering the correlation coefficient of two 
total widths r

ll
, r", is of the order N-I. We had deri­

ved these results choosing a specific boundary con­
dition and assuming the matrix RO to be diagonal. 
However, it can be shown that this result is indepen­
dent of the particular choice of the boundary condi­
tion and the assumption of the diagonal RO. The same 
is not true about the correlation coefficients C, r 

jJ' " and C, " As a matter of fact for a different choice 
Jl' A 

of the boundary condition the correlation coefficient 
C( r becomes nonzero. 

1', I' 

B. A Relation between Resonance Parameters 

In the theory of fluctuations of the cross section,18 
one introduces two resonance parameters NI' ,Bc' 
They are defined by 18 

Nfl = I (VG)cl 2/ r flc' 

Bc 0: !«VGI');>/(I(VGI')cI2>1l!2, 

where 
m 

(31a) 

(31b) 

(31c) 
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TABLE 1. A comparison of the values of (Be)e calculated using the 
relation (32) with the ones given by numerical calculation 

No. of No.of 
channels cases 

Moldauer's 
values Present calculation 

1 5 
20 1 

100 1 
1 5 

20 1 
100 1 

1 1 
20 1 

100 1 
1 5 

20 5 
100 5 
300 5 

1 1 
20 1 

1.0 
1.1 
1.2 
1.1 
1.2 
1.5 
1.1 
1.8 
2.3 
1.3 
2.1 
3.1 
2.9 
1.6 
2.0 

0.96 
0.88 
0.64 
0.70 
0.74 
0.44 
0.55 
0.27 
0.19 
0.38 
0.21 
0.12 
0.14 
0.05 
0.22 

1 
0.83 
0.694 
0.83 
0.694 
0.44 
0.83 
0.3086 
0.18903 
0.5917 
0.2267 
0.1041 
0.12 
0.3906 
0.25 

We would now like to show that these two parameters 
are related in the following way, 

* On leave of absence from Tata Institute of Fundamental 
Research, Bombay, India. 

1 T. Ericson,Ann. Phys.(N.Y.) 23,390 (1963). 

(32) 

2 H. Feshbach,A. K. Kerman, and R.H. Lemmer, Ann.Phys. (N.Y.) 41, 
230 (1967). 

3 C. Mahaux and H.A. Weidenmiiller,Shell Model Approach to Nu­
clear Reactions (North-Holland,Amsterdam, 1969). 
Nazakat Ullah, J .Math. Phys.10, 2099 (1969). 
T. J. Krieger and C. E. Porter, J. Math. Phys. 4,1272 (1963). 

6 C. E. Porter, Statistical Theories of SPectra: Fluctuations (Acade­
mic, New York, 1965);N. Rosenzweig, Brandeis University Summer 
Institute Lectures in Theoretical Physics 1962 Lectures (Benja­
min, New York 1963), Vol. 3, p. 91. 
P. A. Moldauer, Phys. Rev. 171, 1164 (1968). 
Nazakat Ullah and C. S.Warke,Phys. Letters 26B,556 (1968); 

if V is assumed to be diagonal and the total width r 
is assumed to be almost constant. II 

This can be shown using the sum rules8 

N N 

L) (GIlXG) =L)(XII x XII)' 
11=1 II =1 

(33) 

and some straightforward mathematical steps using 
expressions (31) together with the assumptions of 
diagonal V and constant r . The assumption that the 
total width rp is almost d'onstant will be a good as­
sumption if the number of channels are large. We 
use Moldauer's numerical calculation 7 to check re­
lation (32). This is done in Table I where we have 
shown the values of (Bc)c calculated using relation (32), 
assuming <N )11 to be known, and compared them with 
the ones obt~ined by Moldauer using his numerical 
calculations. We see from this table that relation (32), 
holds very well particularly when the number of chan­
nels are large. 

Phys. Rev .164,1316 (1968). 
9 A. M. Lane and R. G. Thomas, Rev. Mod. Phys.30, 257 (1958). 
10 H. Feshbach,Ann. Phys. (N. Y.) 5,357 (1958); 19, 287 (1962);43, 

410 (1967). 
11 C. Mahaux and H.A. Weidenmiiller, Nucl. Phys.A91, 241 (1967). 
12 Nazakat Ullah,J.Math.Phys.8,1095 (1967). 
13 C. E. Porter and N. Rosenzweig, Ann. Acad. Sci. Fennicae, Ser.A 

VI,No.44 (1960). 
14 E. P. Wigner, Stalistical Properties of Real Symmetric Matrices 

ldtll Many Dimensions, Canadian Mathematical Congress Proce­
edings (University of Toronto Press, Toronto, 1957), p. 174. 

15 Nazakat Ullah, Phys. Rev. 173, 971 (1968). 
16 N. Rosenzweig, Phys. Letters 6,123 (1963). 
17 C. E. Porter and R. G. Thomas, Phys. Rev .104, 483 (1956). 
18 P. A. Moldauer, Phys. Rev. 135, B642 (1964). 
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Barakat and Baumann have introduced polynomials U(N) (a 1 , a2' ..• ,a.~) termed the generalized Lucas polyno­
mials satisfying a difference equation with a set of initial conditions. We show that these polynomials can be 
obtained directly from the symmetric functions hn' which are of basic importance in combinatorial analysis. 
Moreover,we extend the definition of V(at>a 2 ) to V(N)(a 1 ,a2 , ••• ,aN) and establish that these polynomials too 
can be obtained from the symmetric functions S., Further, closed expressions for the U and V are obtained. 

1. INTRODUCTION 

In a recent paper, Barakat and Baumann 1 indicated 
the importance of generalized Lucas polynomials in 
a variety of physical problems 2 ,3 and suggested that 
it is desirable to obtain them in a closed form. In 
Barakat's notation, these polynomials are convenient­
ly defined through a set of difference equations given 
by 

N 

Un(!'Jr(a 1 , a2 , ... , aN) = L) (- 1)i-1ai U~~1_i (AN) 
i=1 

together with the N initial conditions 

i =O,l, ... ,N-l, 

where Gij is the Kronecker symbol. Here, in fact, we 
solve the problem even when the difference equation 
satisfies a set of arbitrary initial conditions 

i =O,I, ... ,N -1, 

The usual method of solving Eq. (AN) is by the method 
of generating functions, making use of the roots of 
the characteristic equation 

Obviously, it is difficult to solve for the roots of Eq. 
(DN ) in terms of the coefficients (a;li = 1,2, ... ,N). 
So, here the solutions of Eqs. (AN) and (C

N
) are ob­

tained in terms of the coefficients (ai/i = 1,2, ... , 
N) themselves directly without solving the character­
istic equation. 

In Sec. 2, we prove that the difference Eq. (AN) to­
gether with initial conditions Eq. (CN ) is solvable in 
terms of the coefficients of the characteristic Eq. 
(DN ). In Sec. 3, we summarize conveniently the avail-
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TABLE 1. A comparison of the values of (Be)e calculated using the 
relation (32) with the ones given by numerical calculation 
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channels cases 

Moldauer's 
values Present calculation 
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and some straightforward mathematical steps using 
expressions (31) together with the assumptions of 
diagonal V and constant r . The assumption that the 
total width rp is almost d'onstant will be a good as­
sumption if the number of channels are large. We 
use Moldauer's numerical calculation 7 to check re­
lation (32). This is done in Table I where we have 
shown the values of (Bc)c calculated using relation (32), 
assuming <N )11 to be known, and compared them with 
the ones obt~ined by Moldauer using his numerical 
calculations. We see from this table that relation (32), 
holds very well particularly when the number of chan­
nels are large. 
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can be obtained from the symmetric functions S., Further, closed expressions for the U and V are obtained. 

1. INTRODUCTION 

In a recent paper, Barakat and Baumann 1 indicated 
the importance of generalized Lucas polynomials in 
a variety of physical problems 2 ,3 and suggested that 
it is desirable to obtain them in a closed form. In 
Barakat's notation, these polynomials are convenient­
ly defined through a set of difference equations given 
by 

N 

Un(!'Jr(a 1 , a2 , ... , aN) = L) (- 1)i-1ai U~~1_i (AN) 
i=1 

together with the N initial conditions 

i =O,l, ... ,N-l, 

where Gij is the Kronecker symbol. Here, in fact, we 
solve the problem even when the difference equation 
satisfies a set of arbitrary initial conditions 

i =O,I, ... ,N -1, 

The usual method of solving Eq. (AN) is by the method 
of generating functions, making use of the roots of 
the characteristic equation 

Obviously, it is difficult to solve for the roots of Eq. 
(DN ) in terms of the coefficients (a;li = 1,2, ... ,N). 
So, here the solutions of Eqs. (AN) and (C

N
) are ob­

tained in terms of the coefficients (ai/i = 1,2, ... , 
N) themselves directly without solving the character­
istic equation. 

In Sec. 2, we prove that the difference Eq. (AN) to­
gether with initial conditions Eq. (CN ) is solvable in 
terms of the coefficients of the characteristic Eq. 
(DN ). In Sec. 3, we summarize conveniently the avail-
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able information about the explicit form of Ut2) (a p 
a2) and U (3) (a l' a 2' a 3 ), generalize V (2) (aI' a2) to 
V(N) (a p a2 , ••. , aN) and give explicit expressions in 
closed form for Un(N) (aI' a2 , ... , aN) and v,,(N) (aI' a2, 
••• , II N)' In Sec. 4 and in the Appendix, we prove that 
indeed the generalized Lucas U and V polynomials 
have the form given in Sec. 3. 

2. SOLVABILITY OF THE DIFFERENCE EQUA­
TION IN TERMS OF (a/i = 1,2, ... ,N) 

The usual method of solving Eqs. (AN) and (CN) is by 
the method of generating functions. Let 

00 

f(x) = E unx n 
ncO 

and N (2.1) 
g(x) = E (- l)i ajx i 

jcO 

be the generating functions of the sequences {Un} and 
{1,- aI' a 2, ... ,(- l)NaN},respectively. (The super­
script N has been dropped in this section for con­
venience). Then the product 

00 

f(x)g(x) = ~ w,.xn (2.2) 
ncO 

is the generating function of the sequence {Wn } , where 

and n = 0, 1, 2, . .. . 

Also from Eqs. (AN) and (2.3), 

Wn = 0 for n ;. N 

and from the initial conditions and Eq. (2. 3), 

Wn = bn - a1bn -1 + a2bn -2 - ••• ± anb O' 

n = O,l, ... ,N - 1. 

Therefore, from Eq. (2.2), 

Wo + W1x + ... + WN_1X N- 1 n(x) 

f(x) = 1- a
1
x + a2x 2 - ••• ± aNxN = p(x) 

(2.3) 

(2.4) 

(2.5) 

say, 
(2.6) 

Theorem 1: The generating functionf(x) of {UJ 
can be expanded in terms of the coefficients of the 
polynomials p (x) and n (x). 

Proof: From Eq. (2. 6),it is enough to show that 
l/p(x) = '~nhnxn, where each hn is a function of 
(a i /i = 1,2, ... ,N). 

It is obvious from the form of p(x) that l/p(x) can be 
written as 

P~x) = [1 -q(x)]-l = 1 + q(x) + [q(x)]2 + ... , 

where 
N 

q(x) = 6 (- 1)i- 1a j xi (2.7) 
j c l 

and the radius of convergence of the series can be 
taken as min(1 OJ II i = 1,2, ... ,N), where OJ are the 
roots of Eq. (DN ). Hence the theorem. 

3. LUCAS POLYNOMIALS FOR N = 2,3 

When N = 2, the Lucas polynomials 4-6 are obtained 
as the solution of difference equation (A2) satisfying 

J. Math. Phys., Vol. 13, No.3, March 1972 

the initial conditions (B2). The solution for Eqs. (A2) 
and (B2) is 

U (2) ( ) '" ( 1) v (n - II) n-2 v v 
n+l a p a2 = ~ - II a 1 a 2 , (3.1) 

the series terminating when the exponent of a1 or a2 
turns negative. 

The general term of Eq. (3. 1) can be more conveni­
ently written as 

(_ l)n-r.A (AI + A2)! A ~ (3.2) 
Al !A2! a 1

1
a2' 

where Al + 2A2 = n. 

For N = 2 the Lucas vt2) (aI' a2) polynomials are de­
fined by the difference equation (A2) satisfying the 
initial conditions V ~2) = 2 and V ~2) = a 1 . 

For N = 3, one has to solve the difference equation 
(A3) satisfying the initial conditions (B 3J. The pos­
sible general solution suggested in closed form by 
Barakat and Baumann 1 for U (3) is 

UR)2 (a 1,a2,a3) = UR)l (a 1 ,a2) 

+ ~ ~ (_ 1)/- K (~) (n - ~ - K) ar 21-Ka~-KaJ 
K-l K-l \ (3.3) 

again with the understanding that all the exponents 
are;' O. 

Making use of Eq. (3.1) the general term of Eq. (3. 3) 
can be written as 

(_l)n-r. A [(Al +A2 +A3)!/Al!'\2!A3!]a~la~a~3,(3.4) 

where Al + 2A2 + 3A3 = n. 

Assuming the correctness of Eqs. (3.1) and (3. 3),it 
is easy to guess the general solution of the difference 
equations of generalized Lucas polynomials. Indeed, 
we have the following: 

Theorem 2: The general solution to the difference 
equation 

UP!]' (a 1,a2,···,aN) 

= a1Un(:'],-1 - a2Un+N-2 + ... ± aNU}.N) 

satisfying the initial conditions 

U (N) - U tN) - . .. - U (N) - 0 U (N) - 1 o - 1 - - N-2 -, N-l-
is 

U;~~-l(al,a2, .•• ,aN) =hn(a p a2, ••. ,aN, ••. ) (3.5) 

with aN +1 = aN +2 = .. , = O,where hn the symmetric 
functions called homogeneous 7 product sums of 
weight n (see Appendix). 

Note that Eq. (2.6) gives the solution to Eq. (AN) with 
any initial conditions (eN)' In particular, for N = 2 
and bo = 2,b 1 = a1 we get Lucas V(2)(a 1 ,a2) poly­
nomials which can be identified as the one part sym­
metric functions sn with a3 = a4 = ... = O. We now 
characterize them in the following: 

Theorem 3: The general solution of the difference 
equation 

VJ:'], (a1,a2,···,aN ) 

= a l Vnt:'~_l - a2 Vn(:'~-2 + ... aN Vn(N) 
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satisfying the initial conditions 

Vo =N, Vi = Si, i = 1, 2, ... ,N - 1 
is 

Vn(N)(a 1,a2"" ,aN) = Sn(a 1,a 2,··· ,aN"") 

with 

(3.6) 

(3.7) 

where sn is the one-part symmetric function. (See 
Appendix) 

The expressions for U~N) and Vn (N) given by Eqs. (3. 5) 
and (3. 7), respectively, enable us to obtain,simply, 
the Lucas polynomials. The first few h nand sn 
(n = 1-6) are given in the Appendix from which all 
the results that have been given by Barakat and Bau­
mann for N(n) = 3(8),4(9), and 5(10) are easily ob­
tained. Hence, in tabulating Un(N) and V~N) it is suffi­
cient to give h n and sn only. 

The theorems are proved in the next section. 

4. SOLUTIONS OF THE DIFFERENCE EQUATIONS 

Proof of Theorem 2: We know from the well­
known connection between the symmetric functions 7 

an and hn that 

1 
1 - a1x + a2x 2 - ••• ± arxr 'f '" 

= 1 + h1x + h2x2 + ... , (4.1) 

where, in the denominator on the left-hand side, we 
can assume without loss of generality an infinite num­
ber of terms. Expanding the left-hand side by the 
multinomial theorem,7 we obtain 

h = ~ 
n A1 ''\'2' ... 

where l:.iAi = n. Note that (- 1)n-EA = (- 1)~+A4+ .... 
Hence, the general solution of the difference equation 
(AN) with the initial conditions (BN) is obtained by 
comparing the coefficients of f(x) = XN-1/P(X). 

In particular, as the solution for the Lucas polyno­
mials, we obtain 

(_ 1)n-EA (n)! 
Al!A2!···A N ! 

A A A 
X a 1

1 a 2
2 .. 'a N

N , (4.3) 

where l:.iAi = n which proves Theorem 2. 

Proof of Theorem 3: Let F(x) = x N - u1x N- 1 + 
••• ± aN' Thenp(x) =F(l/x)x N. 

Solving for Wn by making use of the initial conditions 
(3.6), we obtain n(x) = Fl(1/x)X N- 1 , where Fl(x) is 
the derivative of F(x). Further, we know that 

Fl(X) __ 1_ + _1_ + ... + 1 
F(x) - x - O! 1 X - 0!2 X - O! N ' 

where (O!;li = 1,2, ... ,N) are the roots of F(x) = 0. 
Hence, we obtain 

f( ) -1.. Fl(l/x) 
x - x F(l/x) 

1 + 1 + ... + 1 
1-0!1X 1-0!1X 1-O!NX 

= 1 + SIX + s2x2 + .. , (4.4) 

giving sn as the solution of the difference equation 
(AN) satisfying the initial conditions (3.6). It is not 
difficult to see that the general expression for the 
generalized Lucas Vn(N) polynomials in closed form is 

V(N) E (_ 1)n-EA (- 1 + L;'\)!n 
n A

1
,A

2
, .0. ,AN Al !A2! .•. AN! 

a~l a~ •. 'a~N (4.5) 

with l:.iAi = n. 

Theorem 4: If O! l' O! 2' ••• , O! N are the roots of the 
equation x N - a1x N- 1 + '" ± aN = O,then 

U(N) = 
n 

(Xn 
1 

N-2 
0!1 

n 
0!2 

N-2 
(X2 

n N-l 
O!N 0!1 

N-2 N-2 
O!N 0!1 

1 1 

and V~N) = O!~ + (X2 + . " + O!lJ. 

N-l 
0!2 

N-2 
0!2 

N-l 
O!N 

N-2 
O!N 

1 
(4.6) 

Un(N) and Vn(N) obviously satisfy the initial conditions 
(BN ) and (3.6), respectively. When repeated roots 
occur, we apply d 'Hospitals rule to simplify these 
expressions. 

The first part of the theorem follows immediately 
from the expression 

1 N 0!~-1 1 
-- = E ---.:'--- ----
p(x) i=l nj~l(O!i - O!) 1- O!iX 

by expanding the terms on the right-hand side in 
power series and collecting the coefficients of X n- N +1 • 

The second part is obvious. When N = 2, the above 
expressions reduce to 4 

n n 
Ci - Ci 

u<.2) = 1 2 and V(2) = ex': + ~ 
n 0!1 - Ci 2 n 1 2' 

A further extension of the Lucas V polynomials is 
possible by writing 

V(N) = S 
n,m n+m,m (4.7) 

with a N + l = aN +2 = '" = O,where Sw,m are the m 
part symmetric functions of weight w , given by 

S = E (- 1)w+m-EA-l 

w,m x (l:.,\ - 1){A m + (m t 1) Am+l + ... J 
A1 !A2!'" Aw! 

A ":! A xa 1
1 a2 ... a w

w , 

where l:.iAi = wand w "'" m. 

V(N) satisfies the difference equation n,m 

(N) ( ) Vn .m a 1 ,a2 ,··· ,aN 

V (N) V(N) + ± a V(N) = a l n-l.m - a2 n-2,m • •• N n-N,m 
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with the initial conditions V/~ = Si +m. m' i = 1,2, 
'" ,N. For m = 1,we get the generalized Lucas V(N) 

polynomials with the initial conditions V/ N
) = Si ' 

i = 1,2, ... ,N. Further,it is very well known that 
hn and sn could be extended to what are called Schur 
functions. 8 Similar considerations as are developed 
in this paper can be generalized to apply to these 
functions too. This extension together with the appli­
cations will be considered elsewhere. 
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Using a formula derived from equations given by Furry for the normalization integral of the wavefunction cor­
responding to a bound state, we derive the normalization (actor for the higher-order phase-integral approxima­
tions introduced by N. Froman. The present treatment is based on the method developed by N. Froman and 
P. O. Froman, in which one uses exact formulas in the calculations and makes the approximations in the final 
stage. We particularize the resulting general formula to the case of a Single-well potential previously discus­
sed by the present author and to the case of a double-well potential, which has been treated in a series of 
papers from this institute. 

1. INTRODUCTION 

In a previous paper by the present author, 1 which is 
part I of the present paper, the normalization factor 
for the higher-order phase-integral approximations 
introduced by N. Froman2 was obtained for the wave­
function of a bound state in a single-well potential. 
The difference between these higher-order phase­
integral approximations and the higher-order JWKB 
approximations has recently been discussed in some 
detail by N. Froman. 3 Both apprOximations fail near 
the classical turning points, i.e., near the points where 
the particle, according to classical mechaniCS, would 
stop and begin to move in the opposite direction. One 
cannot, therefore, directly insert the approximate 
wavefunction into the normalization condition for the 
exact wavefunction tJ;, 

+00 

J I tJ;(x) 1
2 dx = 1. 

-00 
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From an intuitive discussion for the first-order 
JWKB approximation, Pauli 4 has derived a formula 
for the normalization factor of the approximate 
wavefunction of a bound state in a Single-well poten­
tial. This formula, which is met with also in text­
books (see, e.g., Ref. 5) has been rigorously derived 
by Furry. 6 In his treatment Furry6 was able to avoid 
the vicinity of the turning points and thus used the 
JWKB apprOXimation only in regions where it is 
known to be good. 

In Ref. 1 the present author has generalized Furry's 
discussion6 to the case of the higher-order phase­
integral approximations introduced by N. FrOman.2 

The intuitive approach of Pauli4 would fail for 
approximations of higher order than the first. 

In order to obtain the normalization factor for more 
complicated potential wells, we shall in the present 
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1. INTRODUCTION 

In a previous paper by the present author, 1 which is 
part I of the present paper, the normalization factor 
for the higher-order phase-integral approximations 
introduced by N. Froman2 was obtained for the wave­
function of a bound state in a single-well potential. 
The difference between these higher-order phase­
integral approximations and the higher-order JWKB 
approximations has recently been discussed in some 
detail by N. Froman. 3 Both apprOximations fail near 
the classical turning points, i.e., near the points where 
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From an intuitive discussion for the first-order 
JWKB approximation, Pauli 4 has derived a formula 
for the normalization factor of the approximate 
wavefunction of a bound state in a Single-well poten­
tial. This formula, which is met with also in text­
books (see, e.g., Ref. 5) has been rigorously derived 
by Furry. 6 In his treatment Furry6 was able to avoid 
the vicinity of the turning points and thus used the 
JWKB apprOXimation only in regions where it is 
known to be good. 

In Ref. 1 the present author has generalized Furry's 
discussion6 to the case of the higher-order phase­
integral approximations introduced by N. FrOman.2 

The intuitive approach of Pauli4 would fail for 
approximations of higher order than the first. 

In order to obtain the normalization factor for more 
complicated potential wells, we shall in the present 
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paper use the method for handling the phase-integral 
approximations developed by N. Froman and P. O. 
Froman. 7 An essential feature of this method is that 
one uses exact formulas in the calculations and makes 
the approximations in the final stage. The discussion 
in Sec. 2 of the present paper leads to an exact nor­
malization condition, valid for a potential with an 
arbitrary number of classically allowed regions. This 
normalization condition is shown to be simply re­
lated to the quantization condition. In Secs. 3 and 4 the 
results of Sec. 2 are applied to the case of a single­
well potential previously discussed by the present 
author1 and to the case of a double-well potential. 
The energy levels and wavefunctions of a double 
oscillator have been treated in a series of papers 
from this institute8 - 10 For any order of the phase­
integral approximations the authors of Ref. 9 have 
given approximate expressions for the unnormalized 
wavefunction of a symmetric double oscillator on the 
real axis, except for small regions where the approxi­
mation fails. Numerical results for the energy eigen­
values reported in Ref. 9 and Ref. 10 show the great 
accuracy of the higher-order phase-integral approxi­
mations. In order to make full use of this accuracy, 
it is important to know also the higher-order cor­
rections to the normalization factor. 

2. AN EXACT FORMULA FOR THE NORMAIJZA­
TION FACTOR 

Consider the one-dimensional differential equation 

d
2

1/1 + Q2(z)·" = 0 dz 2 "1', (1) 

where Q2(z) is real for real values x of z. For the 
case of the Schrodinger equation, which is of interest 
to us, we have well-known notations 

Q2(Z) = (2mln2)[E - V(z)], (2) 

where E is a real parameter. It is emphasized that 
quantities related to the differential equation (1) with 
Q2(z) given by (2) will in general depend on the para­
meter E. We only conSider such values of the para­
meter E that Q2(X) is negative when Ix I is sufficient­
ly large. 

First we shall derive a convenient formula for ob­
taining the normalization integral. Using (1), we ob­
tain the equation 

[1/I(x)]2 a~Q2(x) = fx (I/I'(x) a~l/I(x) -I/I(x) a~ 1/1' (X») , 

(3) 
where prime denotes differentiation with respect to 
x. As in Ref. 1, we define 1/11(z) as a certain solution 
of (1), which tends to zero as z tends to - 00 t~rough 
real values. This solution is uniquely determmed 
except for a factor, which is independent of z but 
may depend on E. It can be shown that the function to 
the right of the ope rator d/ dx in (3) with I/; = 1/;1 tends 
to zero as x ~ - 00. We similarly define 1/12(z) as a 
solution of (1), which tends to zero as z tends to + 00 

through real values. From (3) with I/; = 1/1 1 and 1/1 = 
1/12' respectively, we obtain the following formulas: 

t:[1/I1(X)]2 a~Q2(X)dX = (1/I1(x o) a~1/I1(;.;0) 

--1/;1 (xo) a~ 1/11 (xo~, (4a) 
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{DO[1/I2(X)]2 a~Q2(x)dX = (1/I2(XO) a~1/I2(XO) 
Xo 

-!/I2(XO> a~ 1/12 (X 0» , (4b) 

where the point Xo can be chosen arbitrarily. For­
mulas (4) with Q2 given by (2) were obtained by 
Furry.6 As in Ref. 1, we assume that 

!/-'1 (z) = 1/;2 (z) = I/;(z) 

when E is an eigenvalue. Adding (4a) and (4b), and 
using (5), we obtain, when E is an eigenvalue, 

j +oo a a,,) 
-00 [lJ;(x)]2 aE Q2 (;.;)dx =aE(lJ;11/12 -1/121/11' 

where on the right-hand side we shall put z = xO' 
However, the quantity to the right of the operator 

(5) 

(6) 

alaE in the right-hand member of (6) is the Wron­
skian of the solutions 1/11 (z) and lJ;2 (z), and it is well 
known that this Wronskian does not depend on z but 
may depend on E. It should be emphasized that Eqs. 
(1)- (4) are valid for all values of the parameter E 
considered but that Eqs. (5) and (6) are only valid when 
E is an eigenvalue. 

We shall now give a few basic formulas directly taken 
from Refs. 2 and 7. For details we refer to Chaps. 
3- 5 in Ref. 7. We define two linearly independent 
functions 

f1 (z) = q-1/2 (z) exp[ + iw(z)], 

f 2(z) = q-1/2(Z) exp[- iw(z)], 
where 

w'(z) = q(z) 

(7a) 

(7b) 

(8) 

and the prime denotes differentiation with respect to 
z. From (7a), (7b) , and (8) it follows that 

fl (z)f2 (z) - f2 (z)f1 (z) = - 2i. (9) 

The function q(z) is determined such that f1 (z) and 
f 2 (z) are approximate solutions of (1). By usin? a 
Riemann surface and defining w(z) as a convement 
contour integral of q(z) [cf. (8)] we can make the func­
tionsf1 (z) andf2 (z) Single-valued in the region of the 
complex plane which we consider. To begin with, we 
need not specify the expression for q(z), but in Secs. 3 
and 4 we shall let q(z) be the function q(z) appearing 
in the higher-order phase-integral approximations 
introduced by N. Froman.2 Recursion formulas for 
obtaining this function up to any order of the phase­
integral approximations are given in Ref. 2, and ex­
plicit expressions for q(z) up to the ninth-order ap­
proximation can be found in Ref. 1 or in Ref. 11. 

According to (3. 25a), (3. 25b) in Ref. 7 any solution 
lJ; of (1) and its derivative 1/1' can be written as 
follows: 

I/;(z) =J(z)a(z), 

lJ;'(z) =!'(z)a(z). 

(lOa) 

(lOb) 

In these formulae, which involve no approximation, 
J(z) is the row vector 

(11) 

the components of which are given by (7 a), (7b) , and 
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a(z) is a column vector, the components of which are 
denoted by a1 (z) and a 2 (z): 

a(z) = (a1 (Z») . (12) 
a2 (z) 

If a(zo) is known, the column vector a(z) at an arbi­
trary point z is given by the formula 

(13) 

where F(z, z 0) is a matrix obeying the multiplication 
rule 

(14) 

and the inversion formula (3. 20) in Ref. 7, which can 
be written 

(15) 

where 1 and m can take the values 1 or 2. If Q2(x) is 
real and xl and x2 are pOints on the real axis, there 
exist certain symmetry relations between the ele­
ments of F(x l' X2)' These relations are given by 
(5.7), (5. 8), and (5.9) in Ref. 7. 

Cons.ider now a smooth potential with an arbitrary 
number of classically allowed regions separated by 
classically forbidden regions. As in Ref. 7, we use 
the expressions classically allowed and classically 
forbidden in a generalized sense for the regions, 
where q2(x) is positive and negative, respectively. 
We only consider such values of the real parameter 
E that q2(x) and Q2(x) are negative when Ixl is suf­
ficiently large, but to begin with we shall not restrict 
ourselves to the case when E is an eigenvalue. Of 
the two functions f1 (x) andf2(x) we denote by fi (x) 
the one which tends to zero as x tends to - 00, and 
we denote by fk(x) the one which tends to zero as x 
tends to + 00. We thus have the formulas 

fi (x) --7 0 as x --7 - 00, 

fk (x) --7 0 as x --7 + 00, 

(16a) 

(16b) 

and similarly as on p. 104 in Ref. 7 we shall assume 
that the integrals 

Loo If3 _ j (x) 12 dx, 

{OO If3 - k(X) 12 dx 

(17a) 

(17b) 

are both divergent. The pair of integers (j, k) can 
take the values (1,1), (1, 2), (2, 1), and (2,2) depending 
on the number of classically allowed regions and on 
the phase chosen for q1/2(z). 

Proceeding similarly as on pp.103-05 in Ref. 7, one 
can show that the a-coefficients at an arbitrary 
point z for the solution !J, 1 (z) of (1), which tends to 
zero as z tends to - 00 through real values, are 
given by the formulas 

a1(z) = F1j(z,- oo)aj (- 00), 

a2(z) = F 2j(z,- oo)aj (- 00), 

(18a) 

(18b) 

which are analogous to (10. 8a), (10. 8b) in Ref. 7. Sub­
stituting (18a), (18b) into the right-hand members of 
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(lOa), (lOb), we obtain the following formulas: 

l/;l(z) = [J1(z)F1/z,- 00) + f 2(z)F2j(z,- oo)]aj (- 00), 
(19a) 

I/I{(z) = [Jl(z)F1/z,- 00) + f2(z)F2iz,- oo)]a/- 00), 
(19b) 

which are valid for all values of the parameter E 
considered. Analogously we obtain the formulas 

1/12(z) = [J1(z)F lk(z, + 00) + f 2 (z)F2k(z, + oo)]ak(+ 00), 
(20a) 

l/I2(z) = [Jl(z)F lk(z, + 00) + f 2(z)F2k(z, + oo)]ak(+ 00), 
(20b) 

which are also valid for all values of the parameter 
E considered. The quantities a(- 00) in (18a), (18b) 
and (19a), (19b) and ak( + 00) in ~Oa), (20b) may depend 
onE. 

With the aid of the inversion formula (15) we obtain 
from the multiplication rule (14) the following iden­
tity, containing the F-matrix elements appearing in 
the right-hand members of (18)- (20): 

F 3 - i ,k(- 00, + 00) = (- 1)j+1[F1i(z,- 00)F2k(z, + 00) 

- F 2/Z, - oo)F lk(z, + 00)], (21) 

where the point z is arbitrary. Formula (21) is also 
valid when E is not an eigenvalue. 

The Wronskian of the solutions 1/1 1 (z) and 1/12 (z) is 
easily obtained from (19a), (19b), (20a), (20b), (9), and 
(21) : 

1/1 1 (z )l/I 2 (z) - 1/1 2 (z )l/I 1 (z) = 2i (- l)j 

X F3- j •k (- 00, + oo)ai (- oo)ak(+ 00). (22) 

The quantities a j(- 00) and ak( + (0) must be different 
from zero since otherwise the functions 1/11 (z) and 
l/I2(z) would be identically equal to zero. For values 
of the parameter E such that F 3 - i . k(- 00, + 00) is 
different from zero, the Wronskian given by (22) is 
nonzero, and hence in this case 1/1 1 (z) and l/I2(z) are 
linearly independent solutions of (1). For such values 
of E there exist no nontrivial solution of (1), tending 
to zero as z tends to both - 00 and + 00 through real 
values. 

Except for Eqs. (5) and (6) the previous formulas in 
this section are valid even if the parameter E is not 
an eigenvalue, but in the rest of this section we shall 
discuss formulas, which apart from the unnumbered 
equation below are valid only when E fulfils the 
equation 

(23) 

This is an exact quantization condition, selecting the 
values of the parameter E for which bound states 
exist. It is a generalization of Eq. (10.13) in Ref. 7 
to the case of more than one classically allowed 
region. 

Using (3.18) and (3.13) in Ref. 7 and Eqs. (8) and 
(21) in the present paper, we obtain the formula 

d F1k(Z, + 00) 
-=-'--.--'---. = (- 1)i+1 hEq(Z) exp[(- 1) 12iw(z)] 

dz Fl/z, - 00) 
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where 1 can take the values 1 or 2 and where € is a 
function defined by (3.5) in Ref. 7. We thus find that 
the quantities llk(z, + oo)/lliz,- 00) and F 2k(z, + 00)/ 
F 2j(z, - 00) do not depend on Z when E fulfils Eq. (23). 

By imposing on the quantities a/- 00) and ak (+ 00) 
the relation 

ai- oo)/ak(+ 00) = Fjk(z, + oo)IFj/z,~ 00), (24) 

we attain the validity of Eq. (5) as is easily seen from 
(21), (23), (19a), and (20a). 

Substituting (22) into (6), and using (23) if aj (- 00) 
x ak(+ 00) depends on E, we get the exact formula 

+00 a Loe [l,l;(x»)2 aE Q2 (x)dx = 2i(-1)jaj (- oo)ak(+ 00) 
a 

x aE F 3-j, k (- 00, + 00). (25) 

Since the eigenvalues are nondegenerate, the wave­
function l,l;(x) can be written as a real function multi­
plied by a phase factor, which does not depend on x. 
Hence, assuming that Q2 is given by (2) and taking the 
absolute values of both members in Eq. (25), we get 
the formula 

(26) 

Requiring that 

{CO
OO 

Il,l;(x) 1
2dx = 1, (27) 

we obtain from (26) the normalization condition 

I aj (- oo)ak(+ 00) 1-1 = ~ I a~ F 3-j. k(- 00, + 00) I· (28) 

We emphasize again that the formulas (23)-(28) are 
only valid when E is an eigenvalue. 

Equations (24) and (28) together give exact formulas 
for aj (- 00) and ak( + 00). The normalized wavefunction 
corresponding to an eigenvalue of E can then be ob­
tained by substituting the value of aj (- 00) calculated 
in the above way into (19a) or by substituting the 
value of ak( + 00) into (20a). 

3. APPLICATION TO A SINGLE-WELL POTENTIAL 

For the case of a Single-well potential the function 
Q2(z) defined by (2) has precisely two zeros t1 and t2 
on the real axis. We assume that these zeros are 
well separated and that no other zeros of Q2(z) lie 
on or close to the real axis. The function q(z) in 
(7 a) , (7b),and (8) is assumed to be the function q(z) 
appearing in the higher-order phase-integral approxi­
mations discussed in Ref. 2. Precisely as in Ref. 1, 
we introduce the quantity 

(29) 

where the contour of integration r L is shown in Fig. 1 
of Ref. 1. The quantities Land oL70E are positive, 
and for the first few orders of approximation we can 
calculate L from (26) in Ref. 1 and aL/aE from (29) 
in Ref. 1. According to Chap. 10 in Ref. 7 we shall put 
j = k = 2 in the formulas of Sec. 2 in the present paper. 
From the symmetry relation (5. 9a) in Ref. 7, the in­
version formula (15) in the present paper, and the dis­
cussion of the single-well potential on pp. 545-47 in 
Ref. 2, we obtain the symmetry relations 

F 12 (XO'- 00) = - iF~2(xO'- 00), (30a) 

F 12 (xo, + 00) = i exp(- 2iL)F~2 (xo, + 00), (30b) 

where Xo is assumed to lie in the classically allowed 
region. Substituting (30a), (30b) into (21) with j = k = 
2 and z = xc' we obtain the identity 

F 12(- 00, + 00) = iF~2(XO' - oo)F 22(XO' + 00) 

x )1 + exp [- 2i (L + arg ~::~:~:~ :mf . (31) 

It should be noted that formulas (29)-(31) are valid 
for all values of the parameter E. We also remark 
that in Sec. 2 the point Xo is arbitrary, but in the 
present section the position of the pOint Xo is re­
stricted to the classically allowed region. 

From (31) and (23) withj = k = 2 we obtain the exact 
quantization condition 

where s is a nonnegative integer. Equation (32) is the 
same as Eq. (13) in Ref. 2 with z = xO' 

Remembering that j = k = 2 and using (31) and (32), 
we obtain from (24) and (28) the exact formulas 

where in the last formula we have deleted the abso­
lute value signs since the energy derivative is posi­
tive. Formulas (32)-(34) are only valid when E is an 
eigenvalue. We note that the quantizatior. condition 
(32) is obtained by putting the quantity to the right 
of the operator alaE in (34) equal to (s + i)7T. Re­
membering the inversion rule (15), we see from the 
estimate (6. 13a) in Ref. 7 that we can approximate 
F 22 (x O'± 00) by unity and hence neglect the quantity 
arg[F22 (XO' + 00)IF22 (xo,- oo)J appearing in (32) 
and (34). In this way we obtain from (32) and (34) 
the approximate formulas (16) and (25) in Ref. 1 
since the quantity le1 1 in Ref. 1 is equal to la 2 (-cx.:) I. 

4. APPLICATION TO A DOUBLE-WELL POTEN-
TIAL 

We now suppose that Q2(x) has qualitatively the form 
shown in Fig. 1. The situation shown in Fig. la, 
where Q2(Z) has four real zeros (tv t2 , t3' t 4), is 
referred to as the sub-barrier case, and the situation 
shown in Fig.lb, where Q2(z) has two real zeros 
(f1' t4 ) and two complex conjugate zeros (/2 , t3 ) close 
to the real axiS, is referred to as the super-barrier 
case. 8 - 10 Precisely as in Ref. 9, we introduce the 
quantities 

a = - Rei II" q(z)dz, 
a 

K = h IrK q(z)dz, 

{3 = - Rei II" q(z)dz, 
8 

(35a) 

(35b) 

(35c) 

J. Math. Phys., Vol. 13, No.3, March 1972 



                                                                                                                                    

328 STAFFAN YNGVE 

where q(z) is given in Refs. 1,2, or 11 and where the 
contours of integration are given in our Fig. 1 or in 
Figs. 1 and 2 of Ref. 9. Since these contours of inte­
gration are closed loops, the quantities a, (3, K, and 
aa/aE, a(3/aE, aK/aE can be obtained from formulas 
closely analogous to (26) and (29) in Ref. 1. The 
quantity K is positive in the sub-barrier case and 
negative in the superbarrier case. In both these 
cases the quantity aK/aE is negative, and the quan­
tities 0', {3, a alaE, and a{3/aE are positive. Expres­
sions for the function w(z) on the real axis are given 
in Sec. 2 of Ref. 9. 

According to Ref. 8, we shall put j := 2 and k = 1 in 
the formulas in Sec.2 of the present paper. From the 
11 element of the matrix identity (33) in Ref. 8 and 
the formulas (16)-(18) in Ref. 8, we get, after some 
calculations, the identity 

F 11 (- 00, + 00) 

:= 21 F 11 (:- 00, x2)F 11 (x 4' + 00) 1 

x exp(2K + i(a - (3)] (I F 121 cos(i\ + 62) 

- IF221 cos(6 1 - °2)], (36) 

where F12 stands for F 12 (x2'x4) and F22 for 
F 22 (x 2 ,x4) and where °1 and °2 are defined by Eqs. 
(36a), (36b) in Ref. 9, i.e., by 

°1 := a - h - 0- argFll(- 00,x2 ) 

+ ~ argF22 (x2,x4), (37a) 

02 = {3 - -h - a + argF11 (x 4 , + 00) 

- ~ argF22 (x2,x4), (37b) 

a 

" , 

the quantity a being defined by Eq. (36c) in Ref. 8,Le., 
by 

(38) 

Approximate expressions for a up to the fifth-order 
phase-integral approximation are given in Ref. 10. 
According to Eq. (51) in Ref. 11, we have 

1 01« 1 when 1 K 1 is sufficiently large. (39) 

From the 21 element of the multiplication rule (14) 
with z = x2 , Z1 := x 4 , Zo = + 00, the inversion rule 
(15) and the symmetry relations (17) and (18b) in 
Ref. 8, we obtain the identity 

F 21 (X2 , + 00) 
F 22 (x 2 ,- 00) 

:= _ i I F 11 (x 4,'+ 00) I 
F 11 (- 00, x2) 

x exp(2K - i(a + (3)] { 1 F 121 exp(i(01 + °2)] 

-IF221 exp(i(ol -02)]}' (40) 

for the quantity in the right- hand member of (24) with 
j := 2, k := 1, and z := X2' 

Formulas (35)-(40) are valid even if E is not an 
eigenvalue. 

With the aid of (36) we see that the exact quantiza­
tion condition (23) with j := 2, k = 1 is 

(41) 

b 

" ffi " 

" r;. 

'3 
, , 

" 

FlG.1 For the case of a double-well potential this figure shows the qualitative behaviour of Q2(X) and the contours of integration for 
obtaining Cl, fl, and K. Cuts are indicated by heavy lines, and the parts of the contours, which lie on the second Riemann sheet, are 
indicated by dashed lines. For the first Riemann sheet the phase of ql/2(z) is given on the upper lips of the cuts along the real axis. 
Fig.1a refers to the sub-barrier case and Fig.1b to the super-barrier case. 
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which because of Eq. (55) in Ref. 11 or (29) in Ref. 8 
is the same as the quantization condition (35b) in Ref. 
8. From (29) in Ref. 8 we find that the following re­
lation holds when (41) is fulfilled: 

[IF 121 sin(ol + 02) + IF221 sin(o! - 02)] 

x [IF12 1 sin(ol + 02) - IF22 1sin{01 - 02)J 

= exp(- 2K). (42) 

Remembering thatj = 2, k = 1, and using (36), (40), 
(41), and (42), we obtain from (24) and (28) the exact 
formulas 

a2 (-00) I F ll (X 4 ,+00)\ . 
a

l 
(+ (0) = F 11 (- 00, x

2
) exp[2K - lea + j3) J 

x [IF 121 sin(ol + 02) - IF221 sin(ol - 02) J (43) 
and 

2li2 
la2 (- (0) 1-2 = -m IFll(- 00,X2) 12 

x 1- ca/aE)[IF l~ I COS{ol + 02) - IF~21 cos{6 l - 02)] I, 
IF 121 sm(ol + 62) - IF221 sm(61 - 02) 

(44a) 
21f2 I la

1
(+ (0) 1-2 = m F U {x4 , + (0)1 2 exp(2K) 

x 1- (a/ilE)[IF.12 1 cos(61 + 02) - 1~221 cosC01 - °2)J I. 
IF 121 sm(ol + 02) + I F221 sm{ol - 02) (44b) 

We note that the quantization condition (41) is obtained 
by putting the quantity to the right of the operator 
alaE in (44a) , (44b) equal to zero. From (41) it fol­
lows that formulas (44a) , (44b) can also be written 

2112 I la2 (- (0)1-2 =-m F l1(- 00,x2 ) 12 

x ,- (il/aE)(IF12/F22 I cosCo l + 02) - cosCo l - 02» I 
I F 12/F22 I sin(61 + 02) - sin(01 - 02} , 

(45a) 
2112 

lal(+oo) exp(K) 1-2 =mIFl1{x4,+(0)12 

x 1- (a/~E)( I F 12/~ 2.21 cosCOl + O2). - cos(Ol - °2» I. 
F121F 22 sm(ol + 02) + sm(ol - 02) 

(45b) 

With the aid of (41) we see that the energy derivative 
in the numerators of (45a), (45b) can be written 

- a~ (I;~~ I cos(oi + 02) - cos(OI - O2)) 

= I ~121 fSin(OI + 02) ilOE(Ol + 02) 
22 L 

+ ililE (I ~:: I COS(ol - O2))1. (46) 

According to (43a), (43b) , and (52b) in Ref. 11 and 
(6. 13a) in Ref. 7, we have the approximate formulas 

F 22
RJ l, 

IF 12 ! RJ [1 + exp(- 2K) ]1/2 

I F 121 RJ [1 + exp{- 2K) ]1/2, 
F22 

F 11(- 00,x2) ~ 1, 

F 11 (x4' + (0) RJ 1. 

(47 a) 

(47b) 

(47c) 

(47d) 

(47e) 

Equation (47c) is a particularly satisfactory approxi­
mation when K is positive. Furthermore, we mention 
that the approximate formulas (47a) and (47c) are in 
general not very accurate when K takes too large 
negative values. It is obvious that we cannot have 
infinitely large positive values of K, since we have 
two finite potential wells separated by a finite bar­
rier. Similarly we are not interested in taking the 
limit K -4 - 00, since the double-well character of the 
problem would then be completely lost. Hence, in 
subsection A below, where we use the estimates (47) 
and particularize to the case of large absolute values 
of K, we consider fairly large but not infinitely large 
values of 1 K I. Furthermore in subsection A below we 
do not need any accurate formula for IF 12/ F 221 or 
F 22 in the discussion of large negative K, but only the 
rough estimate that 1 F 12/ F 22 I is much greater than 
unity when K takes fairly large negative values. 

Using (47a)-(47e), we obtain from our Eqs. (43), (45a), 
(45b) , (37a), and (37b) the approximate formulas 

a2(- (0) 
a

1 
(+ (0) RJ - exp[2K - i(a + m] {(l + exp(- 2K) ]1/2 sin(a + (3 - 20-) + sin(a - (3)} (48) 

and 

I I 
21121- (a/ilE){[1 + exp(- 2K)J1/2 cos(a + (3 - 20-) + cos(a- il)}1 

a (- (0) -2 RJ -

2 m [1 + exp(- 2K)]1/2 sin(a + (3 - 20-) + sin(a - il) 
(49a) 

2112 1- (a/ilE){[l + exp(- 2K)]1!2 cos(a + il- 20-) + cos(a- f3)}j. la1 (+ (0) exp(K) 1-2 RJ-
m [1 + exp(- 2K) )1/2 sin(a + (3 - 20-) - sin{a - m (49b) 

IntrodUCing the approximations (47a)-(47e) into the 
exact quantization condition (41) and Eqs. (37a), (37b) , 
we see that the energy eigenvalues are approximately 
equal to the zeros of the function to the right of the 
operator il/ilE in (49a) , (49b). 

A. Particularization to the Case of Large Absolute 
Values of K 

When K is negative and sufficiently large to its abso­
lute value, retaining the discussion following Eqs. (47), 
we see from Eqs. (41) and (47c) that the absolute 
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value of the quantity COS(ol + 02) is much smaller 
than unity. Hence ° 1 + 02 is approximately equal to 
a half-integral multiple of 11 and therefore 

sin(ol + 02) ~ - i exp[i(ol + 02)] (50) 

when E is an eigenvalue. We further obtain from 
(47b) the approximate equation 

IF 121 ~ exp(- K). (51) 

From (47c) and the fact that 1 sin(ol + 02) I ~ 1 when 
E is an eigenvalue [cf. Eq. (50)] we see that we can 
neglect the last term in the denominator of (45a) and 
(45b), respectively. Similarly, neglecting the last 
term inside the brackets on the right-hand side of 
(43) and (46), respectively, substituting (46) into (45a), 
(45b) , neglecting the terms discussed above, and 
using (47d) , (47e), (50), and (51), we obtain the approxi­
mate formulas 

a2 (- co) 
a

l 
(+ co) ~ - i exp(K) exp[i(ol + 02 - a - j3)] (52) 

and 

la2(-co)I-2 ~ la l (+ co) exp(K) 1-2 

2122 I a I ~ m aE(Ol + °2) . 

Using (37a), (37b), (39), (47d) , and (47e) , we obtain 
from (52) and (53) the approximate formulas 

(53) 

a2(- co) ~ i exp(K)a l (+ co) (54) 
and 

21/2 a 
la2(- co) 12 ~ la l (+ co) exp(K) 1-2 ~ - aE(a + (3), 

m (55) 

where we have deleted the absolute value signs Since 
the energy derivative of a + (3 is positive. The 
approximate quantization condition (39) in Ref. 8 is 
obtained by putting the quantity to the right of the 
operator a/a E in (55) equal to a half-integral multiple 
of 11. 

To conclude the above discussion, we remark that 
when K takes sufficiently large negative values, we 
can consider the double-well potential as a single­
well potential. However, since we are regarding a 
double-well problem, our present phases and defini­
tions are different from those in Sec. 3 of the present 
paper and in Ref. 1. From the definitions (19) and (21) 
of a and (3 in Ref. 8, which are equivalent to our equa­
tions (35a), (35c) and from Fig. 2 in Ref. 8 we realize 
that the right- hand side of (55) is the same as the 
right-hand side of the approximate normalization con­
dition (25) in Ref. 1 for a Single-well potential. 

When K is positive and sufficiently large, we see from 
(47a), (47b) that F22 and IF12 lare both apprOXimately 
equal to 1, and hence we find from (41) that either 
sino 1 or sin02 is small. We shall exclude the case 
when both sino 1 and sino 2 are small. Remembering 
that we can approximate F22 and IF12 lby unity and 
using (37a), (37b), (39), and (47d) , (47e), we obtain from 
(43) and (45a) when sino l is small, but sin02 is not 
too small, the approximate formulas 

exp(i(3 - 2K) 
at (+ co) ~ - ia2 (- co) 2 (3' (56a) cos 

I I 2fi2 (la a (- co) -2 ~ .--
2 m (lE' 
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(56b) 

Analogously with the aid of (42) we obtain from (43) 
and (45b) When sin02 is small, but sino l is not too 
small, the approximate formulas 

exp(- ia) 
a2 (- oc) ~ ia l (+ co) 2 cosa (57a) 

(57b) 

The approximate quantization condition (38a) and 
(38b) in Ref. 8 are obtained by putting the quantity to 
the right of the operator a/a E in (56b) and (57b) , 
respectively, equal to a half-integral multiple of 'IT. 

We also note that the right-hand members of (56b) 
and (57b) are the same as the right- hand member of 
the approximate normalization condition (25) in Ref. 
1 with r L replaced by rex and rs' respectively. 

B. Particularization to the Case of a Symmetric 
Double-Well Potential 

We shall now specialize our treatment to the case 
when V(- x) = Vex). If we put x 2 = - x 4 , the quanti­
ties 01 and 02 become equal to each other,and are 
given by (47) in Ref. 8. Remembering this formula, 
substituting (42) in Ref. 8 and (55) in Ref. 11 together 
with (46) in Ref. 8 into (43) and (45a), (45b), with a = 
(3 and 01 = 02' and using (41) and (42) with 01 = 02' 
we obtain the exact formulas 

a l (+ co) = ± exp(- K + 2ia)a2 (- co) 
and 

la2(-co)I-2 = la1 (+co) exp(K) 1-2 

41221 I = - F ll (.x 4 , + co) 2 m 

x I aa
E 
~ - (J + argFll(x4, + co) 

=f ~arctan F e~- K) )\ I . 
22 X 4 ,X4 1} 

(58) 

(59) 

As in Refs. 8 and 9, the upper sign corresponds to 
odd parity and the lower sign to even parity of the 
eigenfunction. We note that the quantization con­
dition (49) in Ref. 8 is obtained by putting the quan­
tities to the right of the operator (l /a E in (59) equal 
to (n + i)11. Substituting (47a), (47e) into (59), we 
arrive at the following apprOXimate normalization 
condition: 

4122 
la2 (- co) 1-2 = lal (+ co) exp(K) 1-2 ~ m 

)( a~ [a - (J =f i arctan exp(- K)], (60) 

where we have deleted the absolute value signs on 
the right-hand side. We note that we obtain the 
approximate quantization condition (50) in Ref. 8 by 
putting the quantities to the right of the operator 
a/a E in (60) equal to a half-integral multiple of 11. 
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A classical Hamiltonian dynamical system with 2N-dimensional phase space is studied in the case when a Lie 
algebra of constants of the motion exists which contains 2N - 1 functionally independent elements and when each 
constant of motion generates a complete integral curve. It is proved that a connected (global) Lie group G acts 
on the phase space and acts transitively on each connected component of each surface of constant energy. When 
G is compact, each component of the space of time orbits corresponding to a fixed energy is shown to be a 
(2N - 2)-dimensional compact symplectic manifold diffeomorphic to an orbit of G in the dual of the adjoint repre­
sentation. It is shown that a (global) Lie group does act in the case of the harmonic oscillator, but does not act 
in the case of the negative energy Kepler problem. 

1. INTRODUCTION 

Much work has been done on dynamical groups in 
classical mechanics at the Lie algebra level, but apart 
from Ref. 1 there appears to have been no attempt to 
investigate the situation when the "infinitesimal" Lie 
algebra action can be integrated to give a "global" 
Lie group action. This is what we propose to do under 
the following general hypothesis. 

We study a classical Hamiltonian dynamical system 
under the assumption that constants of motion exist 
which are suffiCient to parametrize the set of mo­
tions and which span a finite-dimensional Lie algebra 
L under the Poisson bracket. Such a family exists, 
of course, in the Kepler problem and the three-di­
mensional harmonic oscillator. For a global Lie 
group action to exist, it is necessary that each of the 
constants of motion generate a vector field which is 
complete, in the sense that its integral curves are 
parametrized by (-w, w). Work of Palaisz shows 
that this condition is also sufficient. 

Under the above assumptions, then, a connected Lie 
group G with Lie algebra isomorphic to L acts on the 
phase space. We prove in this paper that 

(i) G acts transitively on each connected component 
of each surface of constant energy. 

(ii) G acts on the time orbits (set of possible motions). 

(iii) The time orbits can be mapped into the vector 
space L' (the dual of L) by a mapping which commutes 
with the action of G, where G acts on L' by the dual of 
the adjoint representation. 

(iv) When G is compact, each connected component of 
each surface of constant energy is compact, and the 
corresponding space of time orbits is a compact 
symplectic manifold which is diffeomorphic to an 
orbit of G in the vector space L'. This diffeomor­
phism commutes with the action of G. 

These results are the global equivalents of the re­
sults in Ref. 3. 

In the case of the harmonic oscillator, a global action 
of SU (3) does exist, acting transitively on each sur­
face of constant energy. For the negative energy 
Kepler problem, however, a global action of SOC 4) can 
be obtained only when the phase space is suitably 
completed, as in Ref. 1. The effect of this completion 
is to compactify the noncompact surfaces of constant 
energy. 

2. LIE TRANSFORMATION GROUPS 

In this section we set out the standard definitions and 
results on Lie transformation groups which we shall 
need. 

A Lie group G with identity element e is said to be a 
Lie transformation group of a Coo (infinitely differen­
tiable) manifold M if a Coo map 

G xM--"M, (g,P) --"g' p, 

is given satisfying 

(ii) e'p==-p 

for all gvgz E G andp E:. M. We shall say that G acts 
on M when G is a Lie transformation group of M. 

Let X be a contravariant vector field (first-order 
linear differential operator) on M. A differentiable 
curve t H (3 (t) in M is said to be an integral curve of 
X with initial point p if 

;, f(f3(t) = (X!) ({3(t), (3(0) = p, 

for allf E Coo (M). Here Coo (M) denotes the set of 
real Coo functions on M. The vector field X is said to 
be comPle te if, for each P E M, X has an integral 
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(2N - 2)-dimensional compact symplectic manifold diffeomorphic to an orbit of G in the dual of the adjoint repre­
sentation. It is shown that a (global) Lie group does act in the case of the harmonic oscillator, but does not act 
in the case of the negative energy Kepler problem. 

1. INTRODUCTION 

Much work has been done on dynamical groups in 
classical mechanics at the Lie algebra level, but apart 
from Ref. 1 there appears to have been no attempt to 
investigate the situation when the "infinitesimal" Lie 
algebra action can be integrated to give a "global" 
Lie group action. This is what we propose to do under 
the following general hypothesis. 

We study a classical Hamiltonian dynamical system 
under the assumption that constants of motion exist 
which are suffiCient to parametrize the set of mo­
tions and which span a finite-dimensional Lie algebra 
L under the Poisson bracket. Such a family exists, 
of course, in the Kepler problem and the three-di­
mensional harmonic oscillator. For a global Lie 
group action to exist, it is necessary that each of the 
constants of motion generate a vector field which is 
complete, in the sense that its integral curves are 
parametrized by (-w, w). Work of Palaisz shows 
that this condition is also sufficient. 

Under the above assumptions, then, a connected Lie 
group G with Lie algebra isomorphic to L acts on the 
phase space. We prove in this paper that 

(i) G acts transitively on each connected component 
of each surface of constant energy. 

(ii) G acts on the time orbits (set of possible motions). 

(iii) The time orbits can be mapped into the vector 
space L' (the dual of L) by a mapping which commutes 
with the action of G, where G acts on L' by the dual of 
the adjoint representation. 

(iv) When G is compact, each connected component of 
each surface of constant energy is compact, and the 
corresponding space of time orbits is a compact 
symplectic manifold which is diffeomorphic to an 
orbit of G in the vector space L'. This diffeomor­
phism commutes with the action of G. 

These results are the global equivalents of the re­
sults in Ref. 3. 

In the case of the harmonic oscillator, a global action 
of SU (3) does exist, acting transitively on each sur­
face of constant energy. For the negative energy 
Kepler problem, however, a global action of SOC 4) can 
be obtained only when the phase space is suitably 
completed, as in Ref. 1. The effect of this completion 
is to compactify the noncompact surfaces of constant 
energy. 

2. LIE TRANSFORMATION GROUPS 

In this section we set out the standard definitions and 
results on Lie transformation groups which we shall 
need. 

A Lie group G with identity element e is said to be a 
Lie transformation group of a Coo (infinitely differen­
tiable) manifold M if a Coo map 

G xM--"M, (g,P) --"g' p, 

is given satisfying 

(ii) e'p==-p 

for all gvgz E G andp E:. M. We shall say that G acts 
on M when G is a Lie transformation group of M. 

Let X be a contravariant vector field (first-order 
linear differential operator) on M. A differentiable 
curve t H (3 (t) in M is said to be an integral curve of 
X with initial point p if 

;, f(f3(t) = (X!) ({3(t), (3(0) = p, 

for allf E Coo (M). Here Coo (M) denotes the set of 
real Coo functions on M. The vector field X is said to 
be comPle te if, for each P E M, X has an integral 
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curve t H {3(t) with initial point p and parameter do­
main - (jJ < t < CXJ. When M is compact, every vector 
field on M is complete. 

When G acts on M and G has Lie algebra L, then each 
A E L defines a contravariant vector field XA on M 
by 

for eachf E coo(M). This satisfies the basic pro­
perties 

(i) X aA +bA = aXA + bXA 1 ."? 1 2 

(ii) X[AI.~J = X A1X A2 - XA:l X
A1 

(iii) (XAf)([exp(- tA»)·p) = :1 f([exp(-tA)]'p). 

Thus A /--) X A is a Lie algebra homomorphism from 
L into the contravariant vector fields on M and each 
XA is a complete vector field with integral curve 
t t--7 [exp(- tAl ).p having initial point p. 

The preceding paragraph has the following converse 
due to Palais,2 which is the global equivalent of a 
theorem of Lie. Let A H XA be a Lie algebra homo­
morphism from a (real) Lie algebra L into the Lie 
algebra of contravariant vector fields on M. Suppose 
that A 1 , ••• , An is a basis for L and that X A , ••• , XA 1 n 
are complete vector fields. Then there is a connected 
Lie group G with Lie algebra L and an action of G on 
M such that 

d I 
(XAf)(P) = dt f([exp(-IA)]'P)lt=o 

for all f E coc (M), A E L, and p E lvl. 

Let X be a complete vector field on M. For each 
P E M denote by t 1---7 t . P, IR ---7 M, the integral curve 
of X with initial point p. Then 

(t, p) H t·p, 

is an action on !vI of the Lie group lR of real numbers. 
We call this the action of JR generated by X. 

Suppose that a Lie group G acts on two differentiable 
manifolds M and N and that T: M ~ N is a differenti­
able map which commutes with the action of G: 

g'T(P) = T (g'P) 

for all g E G, P EM. Let A H Xf and A H XX be the 
corresponding homomorphisms from L into the con­
travariant vector fields on M and N, respectively. 
Then we have 

X!( (f 0 T) = (XX f) 0 T (2.1) 

for each f E COO (N) and A E L. Conversely, if (2.1) 
holds for all A ELand all f belonging to some fixed 
coordinate system at each point, and if G is connected, 
then it can be shown that T commutes with the action 
of G. 

When G acts on M and P EM, then the set 

G'P = {g·pIg E G} 
of all pOints of !vI which can be obtained from p by the 
action of G is called the G-orbit of p. We denote by 
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MIG == {G·pl p EM} 

the set of all G-orbits. Each point of M belongs to 
exactly one G-orbit. Each orbit G'P is a submanifold 
of M whose dimension is equal to the rank at P of the 
family of vector fields 

{xAIA E L}. 

The map g H g'P is a differentiable map of G onto 
the orbit G·P. When G is compact, it follows that each 
orbit G'P is compact since it is a continuous image of 
the compact space G. 

3. HAMILTONIAN DYNAMICAL SYSTEMS 

Let M be a real Coc-manifold of even dimension 2N. 
A symPlectic form on !vI is a nondegenerate differen­
tial 2-form n (skew-symmetric second-order co­
variant tens,or) whose exterior derivative is zero, 
dn == O. The pair (M, n) is called a symplectic mani­
fold. A local coordinate system Q1' •.. , q N' Pv ... , 
PN on M is called a canonical coordinate system if 
the expression of n in these coordinates is 

N 

.6 dqi 1\ dP i • 
;=1 

Each point of M lies in the domain of some canonical 
coordinate system. 

For each f E coc (M) the differential df is a covari­
ant vector field, and by using n as a metric tensor we 
may pass to the corresponding contravariant vector 
field which we denote by X f • We call X f the vector 
field generated by f. It is uniquely defined by the 
equation 

n (Xf , Y) = df(Y) = Yf 

for all contravariant Y. In terms of a canonical co­
ordinate system we have 

~ (OJ oj ~ dj== ~ - dQ; + ap. dP i 
,=1 oqi ' 

and 

x-t(~~-~~\ 
f - i=l aP i aqi aqi ap;) . 

For eachf, h E COO (M) we write 

and call it the Poisson bracket of f and h. In canoni­
cal coordinates we have, locally, 

{f, h} = £ (OJ ~ - ~ ~) . 
;=1 ap j oq; oqi api 

Under the Poisson bracket the real vector space 
Coo (M) becomes a Lie algebra. The map f H X f is 
a Lie algebra homomorphism of Coo(M) into the Lie 
algebra of contravariant vector fields on M 

Thus 
X af+ bh = aXj + bXh , 

X{j,h} = ~Xh - XhXj 

for all f, h EO COO(M). 

We shall call a function H E cco(M) a Hamiltonian 
function if it has no critical pOints (dH nowhere zero) 
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and if XH is a complete vector field on M. We shall 
call the triple (M, n, H) a (conservative time-inde­
pendent) Hamiltonian dynamical system. M is called 
the phase space of the system. The level sets of H 
are called the surfaces of constant energy. The 
action of JR on M which is generated by XH is called 
the motion in time. The corresponding orbit 

R·p={t·pltE JR} 

is called the lime urbit with initial point p. Thus we 
have 

:t f(t·P) = (XHf) (t.p) = {H,f}(t·P) (3.1) 

for all t E JR, f E C""(M), and p E M. 

4. LIE ALGEBRAS OF CONSTANTS OF MOTION 

In the following two sections we shall repeatedly use 
the standard results and definitions of the previous 
two sections. 

Let (M, n, H) be a Hamiltonian dynamical system with 
dimM = 2N. Let L be a finite-dimensional Lie sub­
algebra of C""(M) and let it, ... ,fn be a basis of L. 
Suppose that 

(i) {H, f k } = 0 for k = 1, ... , n, 

(ii) df l' ... ,dfn span a (2N - 1)-dimensional vector 
space at each point of M, 

(iii) each fk generates a complete vector field. 

Condition (i) ensures by (3.1) that the elements of L 
are constant on the time orbits and are thus con­
slants of motion. Condition (ii) ensures that the 
level sets of the family of functions in L are one 
dimensional and therefore coincide locally with the 
time orbits. We shall call L a full Lie system of 
constants of motion. 

A basis-free formulation of condition (ii) may be 
given as follows. For each f ELand each 1 E L', the 
space of linear forms on L, denote by (j, l) the value 
of 1 at f. Let 

,: M->L 

be the map defined by 

(j, T(P» = i(P) 

for all P EM, f E L . 

We note that for each f E L 

(f 0 T) (P) = (j, T(P» = f(P) 

so that 

fo T = f. (4.1) 

When Ii, ... ,fn is taken as a basis for L, we see that 
,(P) has coordinates 

(A (P), ••• ,in(P» 

relative to the dual basis for L' since Up T(P» = 
f;(P). Condition (ii) is therefore equivalent to 

T : M -> L I has rank 2N - 1 at each point. 

Theorem 1: Let L be a full Lie system of con­
stants of motion of a Hamiltonian dynamical system 
(M,n,H). Then: 

(a) A connected Lie group G with Lie algebra L acts 
on the phase space M. 

(b) Each G-orbit is a connected component of a sur­
face of constant energy. 

(c) The map T: M -> L' commutes with the action of 
G, where G acts on L' via the dual of the adjoint 
representation. 

Proof: 

(a) Consider the Lie algebra homomorphism f H x.r 
from L into the Lie algebra of vector fields on M. 
Since X

jt
, ••• 'X

jn 
are complete vector fields, it 

follows from the theorem of Palais that there is a 
connected Lie group G with Lie algebra L and an 
action of G on M such that 

d 
dt h([exp(- tf»)'P) = (Xjh)([exp(- if)J·P) 

== {f, h} «( exp(- ifll· P ) 

for all f E L, hE Coo (M), P EM, and t E JR. 

(b) Let P E M and consider the orbit G'P under the 
action of G. For each i E L we have 

d~ H([exp(- if)]oP) = {j,H} ([exp(- if)]oP) = 0 

by (i). ThusH«(exp (- tf))op) = H(p). Each element 
of G is a product of exponentials since G is connect­
ed, and therefore H(go P) :::: H(P) for all g E G. This 
proves that H is constant on each orbit Gop, and 
therefore G acts on each surface of constant energy. 

Since n is nondegenerate, the rank of the family of 
contravariant vector fields {x.r If E L} is the same 
as the rank of the family of covariant vector fields 
{di If E L} at each point and this is equal to 2N - 1 by 
(ii). Therefore each orbit G'P is a (2N - 1)-dimen­
sional manifold and is thus a connected open submani­
fold of the corresponding surface of constant energy. 
This proves that each orbit G'P is a connected com­
ponent of a surface of constant energy. 

(c) Finally for all i, h E L we have 

Xj(h 0 T) = Xjh = 11, hi = {I, h} 0; 

by (4.1). Since G is cormected and since any basis 
for L is a coordinate system for L' , if follows that T 

commutes with the action of G, where G acts on L' 
via the dual of the adjoint representation. 

This completes the proof of the theorem. 

5. THE STRUCTURE OF THE SPACE OF TIME 
ORBITS 

Let (M, n, H) be a Hamiltonian dynamical system and 
let L be a full Lie system of constants of motion. 
Since :t H(t·P) = {H, H} (toP) = 0 

for all t E lR and P EMit follows that H is constant 
on the time orbit JR.p. The motion in time therefore 
gives an action of JR on each connected component Gop 
of each surface of constant energy. 
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The map T: M -) L' introduced in the previous section 
is constant on each time orbit since each element of 
L is a constant of motion. Since T has rank 2N - 1 at 
each point, it follows that the level set of T through P 
coincides locally with the time orbit JR. 'p which is 
contained in C· p. The restriction of T to the (2N - 1) 
-dimensional submanifold G'P therefore has rank 
2N - 2 at each point. We can therefore choose an 
open neighborhood U of P in C'p which is cubical with 
respect to a coordinate system of the form 

fi , ••• , fi N ,11. 
1 2 -2 

The time orbits in U are contained in the level sets 
of ft, ... ,fn' and it follows that each time orbit in­
tersects U at most once and in a flat one-dimensional 
segment. An application of a result of Palais4 now 
gives: 

Theorem 2: Let L be a full Lie system of con­
stants of motion of a Hamiltonian dynamical system, 
and let C be the connected Lie group of Theorem 1. 
Suppose that G is compact. Then: 

(a) The spac e G'P /JR. of time orbits contained in any 
connected component C'p of any surface of constant 
energy is a compact manifold of dimenSion 2N - 2. 
The time orbits contained in G'P are all compact and 
diffeomorphic to a circle. 

(b) The natural projection 

TT: G'P -) G'p/R 

is a fibering, the fibres being the time orbits. 

(c) The functions f, , ... , f,· provide a local co-
'1 ZN-2 

ordmate system on G'P /JR. in a neighborhood of 11( p). 

Proof: Since 

XjXH - X H Xj = X{J,H} = 0 

for all f E L, it follows that the actions on M of C and 
of R commute. We therefore have an action of C on 
the space M/R of time orbits. Since the map T: M -) 
L' is constant on time-orbits and commutes with the 
action of G, we have an induced map 

M/R -) L', F,:P H T{P), 

which commutes with the action of G. 

If P EM and T{P) :::: l, then the orbit G'P in M is map­
ped by T onto the orbit C'l in L'. The resulting map 

G'p/~ -) C'l 

has rank 2N - 2, which is equal to the dimension of the 
manifold G·p/R. 

It follows that G'p/R is a covering space of the orbit 
G ·Z. By a proposition we shall prove in the next para­
graph, G'l is Simply connected and the map C·p/JR. --) 
C'l is therefore a diffeomorphism (bijective). Since 
C'l is a submanifold of the vector space L', this gives 
a "linearization" of the space C·p/R of time orbits. 
This is the global equivalent of the results of Ref. 3. 

The following proposition together with its proof was 
pointed out to us by Professor Steven Halperin. For 
a compact semisimple group it is a known result. 
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Proposition: Let G be a compact connected Lie 
group, and let C act on the dual L' of its Lie algebra 
L by the dual of the adjoint representation. Then the 
orbits of C in L' are all simply connected. 

Proof: Since C is compact, there exists a C-in­
variant inner product on L, and this provides a C-in­
variant isomorphism between Land L'. We therefore 
need only show that the G-orbits in L are all simply 
connected. 

We have5 L:::: Ll EEl Z where Z is the center of Land 
Ll = [L, L] is a compact semisimple subalgebra. Let 
H be the connected Lie subgroup of G having Ll as 
Lie algebra. Then H is a semisimple Lie group with 
a compact Simply connected covering group B. 6 

For any x in L we have x:::: y + z, where yELl and 
Z EO Z. The translation of L by Z maps y to x and com­
mutes with the action of C since ad(g)z = z for all g 
in G. The translation by z therefore maps the orbit 
C'y diffeomorphically onto the orbit C·x. Now each 
g in G is of the form g :::: hk, where h E H and k is in 
the center of G. Therefore 

ad{g)y = ad{h)ad{k}r = ad(h)y. 

This shows that G'Y = H'y, which in turn is equal to 
B'Y, which is diffeomorj>hic to B/Ry, where By is the 
isotropy group oj y_in H. Since R is simply connect­
ed, the quotient H/Hy will be simply connected pro­
vided that By is connected. 7 It remains therefore to 
prove that By is connected. Since 

By == {h E iI I ad(h)y} 

:= {h E B I h(exp (ty»h-1 :::: exp (ty), all t E JR.}, 

we see that iI is the centralizer of y 

{exp{ty)1 t E R}. 

The closure of the latter is a compact Abelian con­
nected group (torus) and its centralizer By is con­
nected.8 This completes the proof of the proposition. 

Each contravariant tangent vector X to C'p at p is 
mapped by 11 to a tangent vector 1f*X to G' P /R at 11 (p). 
Moreover 11* X is zero if and only if Xf is zero for all 
f EO L, since the local coordinate functions /; , ... , 

1 
j, belong to L. It follows that for each h E L we 
'2N-2 

have n(Xjlxh ) = Xhf = 0 for allf E L if and only if 
TT..J(h = O. Therefore, n induces a nondegenerate sym­
plectic form n on G 'p /R defined by 

n(1I*Xj , 1I*Xh )(TT(P» = n(Xj , Xh)(p) := {h,f} (P) 
(5.1) 

We have thus proved: 

Theorem 3: Let the conditions of Theorem 2 hold. 
Then: 

(a) there is a diffeomorphism 

G'p/R --) G'l 

commuting with the action of G, from the space G'P /R 
onto an orbit of G in the vector space L', where G 
acts on L' by the dual of the adjoint representation. 

(b) G'p/R is a symplectic manifold of dimension 
2N-2. 
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We note that we have a commutative diagram 

and (5.1) may be expressed as 

Q (11* Xi' l1*Xh )(7T(P)) = ({h,j} , T (p). 

This shows that the symplectic form Q on G'p/R 
corresponds to the G-invariant symplectic form on 
G 'I which has been introduced by Kostant and 
Souriau. 9 

6. THE KEPLER PROBLEM AND THE HARMONIC 
OSCn.LATOR 

We now discuss two well-known cases in the light of 
the foregoing analysis. 

In the Kepler problem, with negative energy, the phase 
space is a subset of R6 with canonical coordinates 

and Hamiltonian 

H = ~ p2 - 1/ Iq I. 

The phase space is the subset given by H < O. The 
angular momentum functions 

and the Pauli-Lenz functions 

form the basis of a Lie algebra of constants of mo­
tion under the Poisson bracket. This algebra is iso­
morphic to the algebra of the orthogonal group SO(4), 
and any connected Lie group having this Lie algebra 
is necessarily compact. The surfaces of constant 
energy 

~p2 -1/lql =-k2 

are, however, connected and noncompact and there­
fore cannot admit a transitive action of a compact 
group. It follows from Theorem 1 that Land B do not 
span a full Lie system of constants of motion. The 
reason why is that the Pauli - Lenz functions B do not 
generate complete vector fields, and the local Lie 
group action does not, therefore, extend to a global 
action. 

It is, however, interesting to note that it is possible 
to adjoin points to the phase space of the negative 
energy Kepler problem in such a way that the com­
pact group 50(4) does act on the resulting extended 
phase space. This adjunction of points may be 
carried out by parametrizing the phase space for 

1 H. Bacry, H. Ruegg, and J. Souriau, Commun. Math. Phys. 3,323 
(1966). 

2 R. S. Palais, Mem. Am. Math. Soc. No. 22 (1957), Theorem m, p. 95, 
and Theorem N, p. 98. 

large Ip I and small Iq I by the seven functions 

L(q,p), B(q,p), exp[i a (q, p)] 

subject to L·B = O. Here a (q,p),denotes the time 
taken by a moving body to reach the perihelion from 
an initial state (q, p), normalized so that o(q, p) is de­
fined modulo 27T. The adjoined points are then defin­
ed to be those parametrized by 

L =0, a = O. 

These may be thought of as limiting states as partic­
les moving on rectilinear orbits approach the centre 
of force. It is shown by Bacry, Ruegg and Souriau1 

that 50(4) acts on this extended phase space. 

In the case of the harmonic oscillator the phase space 
is R6 - {o} with canonical coordinates 

and Hamiltonian 

H = ~ (P2 + q2). 

The angular momentum functions 

and the functions 

i,j=1,2,3, 

span a Lie algebra of constants of motion under the 
Poisson bracket, isomorphic to the algebra of [,(3), 
and their differentials have rank 5 at each point. The 
angular momentum functions generate complete vec­
tor fields since they correspond to the action of the 
rotation group SO (3). The function tij generates a 
vector field whose integral curves are solutions of 

dPk 1 as = {t ii , Pk j = - 0kqi -oikqj , 

dqk 
ds ={tu,qk} = °jkPj + °ikPj' 

This is a system of linear first-order differential 
equations with constant coefficients and the integral 
curves are therefore parametrized by - 00 < s < 00. 

Thus each til generates a complete vector field, and 
we have a full Lie system of constants of motion. 
Theorem 1 shows that U(3) acts transitively on each 
surface of constant nonzero energy: 
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Scattering from a Periodic Corrugated Structure. II. Thin Comb with Hard Boundaries 
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The scattered field is calculated for plane wave incidence on a periodic rectangularly corrugated surface (thin 
comb grating) with hard (Neumann) boundary conditions. Except for the hard boundary (and the consequent 
representation of the field in the comb wells), the formalism is similar to that of a previous paper [J. Math. 
Phys.12, 1913 (1971)J. Reflection coefficients are plotted, grating anomalies illustrated, and a correspondence 
between reflection coefficients and amplitude phases (as a function of corrugation depth) is illustrated. 

1. INTRODUCTION 

In a previous paper,l we discussed the calculation of 
the scattered field when a plane wave was incident on 
a (one-dimensional) periodic corrugated surface con­
Sisting of an infinite number of periodically spaced, 
infinitesimally thin parallel plates having a finite 
depth (diffraction by a thin comb grating). The soft 
(Dirichlet) boundary condition was used. In this paper, 
exactly the same geometric surface is again used, but 
the hard (Neumann) boundary value problem is con­
sidered. Details and notation are similar in both 
papers. Hurd2 has previously discussed this problem 
approximately, and from a surface wave point of view. 
He used the residue calculus method to obtain his 
analytically approximate solution. It is possible to 
remove the more restrictive analytical approximation 
by replacing it with a numerical approximation having 
a uniformly high accuracy over any parameter domain. 
The numerical approximation consists in a modifica­
tion of the residue calculus method due to Mittra 3 and 
is used here as in Paper I. For a discussion of some 
of the grating anomalies to be expected from surfaces 
like this, reference is made to the results of Stewart 
and GallawaY,4 Hessel and Oliner, 5 and Tseng.6 

The formalism of the problem is presented in Sec. 2 
and is similar to I except for the representation of the 
fields in the wells and the hard (Neumann) boundary 
condition. Linear equations are derived which relate 
the field amplitude coefficients in the different geo­
metric regions. The modified residue calculus 
method enables us to solve the exact set of equations 
approximately, whereas Hurd2 had to approximate the 
original equations, as well as further approximate 
their solution. The amplitude coefficients are ex­
pressed as either values or residues of a constructed 
meromorphic function. 

Section 3 contains the results and discussion. Many of 
the parameter values are chosen to compare and con­
trast with results in I. Reflection coefficients and 
amplitude phases are plotted with respect to incident 
frequency, incident angle, and corrugation depth. Ob­
servable grating anomalies include the Rayleigh ano­
maly, Wood S-anomaly, and Brewster angle anomaly, 4-6 
as well as the correspondence between reflection co­
efficients and amplitude phases, as a function of depth. 
The latter behavior was also observed in I. Finally, 
the periodicity of the reflection coefficients and ampli­
tude phases as a function of depth is illustrated. 
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2. FORMALISM 

The problem is to calculate the full velocity potential 
field 1/1 when a plane wave 1/Ii (at angle ei ) is incident 
on the periodic (period 2l) rectangularly corrugated 
surface illustrated in Fig. 1, and consisting of thin 
parallel plates of finite depth d. The surface Sex) is 
given by 

Sex) = {. - d x "" 2ml m = 0, ± 1, ..•. 
Ox = 2ml 

Region A is z 2: 0 and B is - d ~ z ~ O. In both 
regions,1/I satisfies the Helmholtz equation (e- iwt 

assumed, k = 21T/>", >.. = incident wavelength) 

(~ + ~ + k2)1/I(X, z) = O. ox2 OZ 2 

(2.1) 

(2.2) 

The geometry and general procedure are similar to I, 
but here the hard (Neumann) boundary condition is 
used, viz., 

o 
on 1/I[x,S(x)] = 0, (2.3) 

where n is the surface normal. 1/1 has the same re­
strictions as in Sec. 2 of I. 

The field representation for z 2: 0 (region A) is 
00 

I/I
A 

(x, z) = eik(aox-f>oz) + L; A~e ik(anx +tlnZ
). (2.4) 

n:::-OO 

The notation is explained in I. The superscript Uk" on 
An indicates the hard boundary condition. 

The field representation for 0 2: Z ? - d (region B) 
and 0 :=:: x ~ 2l is 

_x 

FIG. 1. Plane wave (angle B,) incident on a cor­
rugated thin comb grating with period 21 and depth 
d. The angles of the scattered plane waves are en' 
Region A is Z 2: 0, region B is - d "" z "" 0, and rp is 
a phase lag. 
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(Academic, New York, 1962), p.122, Proposition 6.6. 
6 See Ref. 5, p. 123, Theorem 6.9. 
7 A simple proof of this standard fact is contained in the last nine 

lines of p. 178 of Ref. 5. 
8 See Ref. 5, p. 247, Corollary 2.8. 

9 B. Kostant, Proceedings of the United States Japan Seminar in 
Differential Geometry (Kyoto, 1965); J. M. Souriau, Structures des 
systemes dynamique (Dunod, Paris, 1970), p.1l6; or D. J. Simms, 
Projective Representations, Symplectic Manifolds and Extensions 
lof Lie Algebras (C. N. R. S. notes 69/P. 300, Marseille, 1969), p. 34. 

Scattering from a Periodic Corrugated Structure. II. Thin Comb with Hard Boundaries 

John A.DeSanto 
Naval Research Laboratory, Washington, D.C. 20390 

(Received 15 August 1971) 

The scattered field is calculated for plane wave incidence on a periodic rectangularly corrugated surface (thin 
comb grating) with hard (Neumann) boundary conditions. Except for the hard boundary (and the consequent 
representation of the field in the comb wells), the formalism is similar to that of a previous paper [J. Math. 
Phys.12, 1913 (1971)J. Reflection coefficients are plotted, grating anomalies illustrated, and a correspondence 
between reflection coefficients and amplitude phases (as a function of corrugation depth) is illustrated. 

1. INTRODUCTION 

In a previous paper,l we discussed the calculation of 
the scattered field when a plane wave was incident on 
a (one-dimensional) periodic corrugated surface con­
Sisting of an infinite number of periodically spaced, 
infinitesimally thin parallel plates having a finite 
depth (diffraction by a thin comb grating). The soft 
(Dirichlet) boundary condition was used. In this paper, 
exactly the same geometric surface is again used, but 
the hard (Neumann) boundary value problem is con­
sidered. Details and notation are similar in both 
papers. Hurd2 has previously discussed this problem 
approximately, and from a surface wave point of view. 
He used the residue calculus method to obtain his 
analytically approximate solution. It is possible to 
remove the more restrictive analytical approximation 
by replacing it with a numerical approximation having 
a uniformly high accuracy over any parameter domain. 
The numerical approximation consists in a modifica­
tion of the residue calculus method due to Mittra 3 and 
is used here as in Paper I. For a discussion of some 
of the grating anomalies to be expected from surfaces 
like this, reference is made to the results of Stewart 
and GallawaY,4 Hessel and Oliner, 5 and Tseng.6 

The formalism of the problem is presented in Sec. 2 
and is similar to I except for the representation of the 
fields in the wells and the hard (Neumann) boundary 
condition. Linear equations are derived which relate 
the field amplitude coefficients in the different geo­
metric regions. The modified residue calculus 
method enables us to solve the exact set of equations 
approximately, whereas Hurd2 had to approximate the 
original equations, as well as further approximate 
their solution. The amplitude coefficients are ex­
pressed as either values or residues of a constructed 
meromorphic function. 

Section 3 contains the results and discussion. Many of 
the parameter values are chosen to compare and con­
trast with results in I. Reflection coefficients and 
amplitude phases are plotted with respect to incident 
frequency, incident angle, and corrugation depth. Ob­
servable grating anomalies include the Rayleigh ano­
maly, Wood S-anomaly, and Brewster angle anomaly, 4-6 
as well as the correspondence between reflection co­
efficients and amplitude phases, as a function of depth. 
The latter behavior was also observed in I. Finally, 
the periodicity of the reflection coefficients and ampli­
tude phases as a function of depth is illustrated. 
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2. FORMALISM 

The problem is to calculate the full velocity potential 
field 1/1 when a plane wave 1/Ii (at angle ei ) is incident 
on the periodic (period 2l) rectangularly corrugated 
surface illustrated in Fig. 1, and consisting of thin 
parallel plates of finite depth d. The surface Sex) is 
given by 
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Region A is z 2: 0 and B is - d ~ z ~ O. In both 
regions,1/I satisfies the Helmholtz equation (e- iwt 

assumed, k = 21T/>", >.. = incident wavelength) 

(~ + ~ + k2)1/I(X, z) = O. ox2 OZ 2 

(2.1) 

(2.2) 

The geometry and general procedure are similar to I, 
but here the hard (Neumann) boundary condition is 
used, viz., 

o 
on 1/I[x,S(x)] = 0, (2.3) 

where n is the surface normal. 1/1 has the same re­
strictions as in Sec. 2 of I. 

The field representation for z 2: 0 (region A) is 
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I/I
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(x, z) = eik(aox-f>oz) + L; A~e ik(anx +tlnZ
). (2.4) 

n:::-OO 

The notation is explained in I. The superscript Uk" on 
An indicates the hard boundary condition. 

The field representation for 0 2: Z ? - d (region B) 
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d. The angles of the scattered plane waves are en' 
Region A is Z 2: 0, region B is - d "" z "" 0, and rp is 
a phase lag. 



                                                                                                                                    

PER 10 D ICC 0 R RUG ATE D S T R U C T U R E. I I 337 
00 

1/IB(X, t) = ~ Bj cos(kPjx) cos{kqj (z + d)}, (2.5) 
1"0 

where Pj = .111./2 and P; + q; =:: 1. This satisfies Eq. 
(2.3) at x =:: 0,21 and at z = - d. For values of x out­
side this range,1/IB is given by the Floquet condition in 
1. 

The continuity conditions are 

I/IA(X,O) = 1/Il3(x, 0), (2.6) 

iJ1/IA ()~l3 
i-i<x,O) =:: iJz (x, 0). (2.7) 

These are expressions derived from the physical con­
tinuity conditions of pressure and normal velocity. 

Substituting the field representations in Eqs. (2. 6) and 
(2.7), projecting out the Bj amplitudes, and rearrang­
ing the resulting equations yield the following set of 
equations relating the amplitude coefficients 

L: Q Ah --- ± - Q o --- ± ---
00 ~e-iqjkd eiqjkd) (e-iqjkd eiqjkd) 

n"-OO n n f3n - qj f3n + qj f30 + qj flo - qj 

=~h)' (2.8) 

where 

hJ == 2niqjBji\1[1- (_)je21titto/A]-1. (2.9) 

The upper (lower) sign in Eq. (2.8) is to be read with 
the 0 or EJ term on the right-hand side. 

Consider contour integrals of the form 

~
e-iqjkd eiqjkd) 

(2ni)-licdwF(w) -- ± -+- = 0, 
w- qj w qj 

(2.10) 

where C is a closed contour at in,jnity, and the mero­
morphic function F(w) has properties 

(a) simple poles at w = f3
n

, n = 0, ± 1, ± 2, ... , and 
w = - f3 0 ' 

(b) simple zeroes at w = q; = q. + 0., j =:: 0, 1, 2, ... , 
which are found from the condftion J 

F(qj) + e2iqjkdF(_ qj) = 0, 

(c) F(w) = O(w- 1I2) as Iwl-- 00. 

(2.11) 

Substituting F(w) into Eq. (2.10), and performing the 
integration yields a residue series similar to Eq. 
(2.8) if the following identifications are made 

QnA~ = R ({3,.,), (2. 12) 

Bj = (iA/nqj)e-i'5kd(1_(_)je2niaoiA)F(q), (2.13) 

0'0 =:: R(- (30 ), (2.14) 

where R(f3) is the residue of F(w) at w =:: {3. Equation 
(2. 14) is used in the construction of the function 
which is given by 

F(w) = 20' 013-0 w - qb _IJ(_w_, _q_')_ n 12(- f30 ' (3) 

w2 - 135 13 0 + q6 l1(- 13 0, q') l112(w, (3) 

(2.15) 

where the infinite products are 

11(w, q') = m~l (1 - wjq:n )(2q;JimA)e2WlimA, (2.16) 

(2.17) 

and l112 == III Il2 • These products are discussed in 1. 
Using Eqs. (2.12) and (2.15) and techniques in I, it is 
seen that 

f3 0 (:3n - qo l1 «(:3n' q') Il12(- 13n, (3) 

f3n f3n + qb Il(- f30 ' q') 1112 ({30, (3) 

(2.18) 

The edge condition follows Similarly to the edge con­
dition in I if we note that for large n, A~ = o(n-3/2). 
Also, the flux conservation relation can be derived 
and is similar to that in I, viz. 

.0 Rn == L: I A~ 12(f3n
) =:: 1, (2.19) 

n n f3 0 

where the sum runs over integer n such that f3n is 
real (real scattering orders), and It,. are the in­
dividual spectral reflection coefficients. Rn as well 
as the amplitude phases ¢n are p19tted later. The 
latter are defined via A~ = I A~ let<l>n. 

Lastly, it is necessary to write the iterative scheme 
used to find the OJ, and thereby the zeroes of F(w) 
shifted from the known qj values. This follows by sub­
stituting F(w) into Eq. (2.11), rearranging terms, and 
introducing an iteration index. A similar procedure 
was used in 1. Only the final equation will be written 
here. It is 

6(m+l) e 4q/ijA j-1 o(m+1) + _ 
J n n qn qj 4q'/inA --;-----::-:--------"- e 1 

0(m+1) + 2q. n~l 6(m+1) + q + q. 
J J n n J 

00 o(m) + q + q 
= rhs n n n j e-4q/inA, (2.20) 

n"J+l oem) + q _ q. 
n n J 

where m is the iteration index, rhs is 

rhs == l112(qj,{3) eZi <ljv"d-Z(ln2)fA) , (2.21) 
Il12(- qj' f3) 

which is the same rhs as in I, and o~m) ~ 0 for n large. 
The iteration procedure is similar to the procedure 
in I, except here the calculation of o. starts with 
. 0 J J = . Once the OJ are known, the amplitudes are 
evaluated fromEqs. (2.12) and (2.13). Results are 
presented in the next section. 

3. RESULTS AND DISCUSSION 

It has already been remarked that the iterative pro­
cedure is similar to that in I; So is the evaluation of 
the reflection coefficients Rn and amplitude phases 
¢n' The errors on both procedures are the same as 
in I although generally the iterative procedure con­
verged slower here than in 1. Equation (2.19) was 
again used as a check on the accuracy, and was satis­
fied to at least three decimal places. 

Figures 2-10 are plots of Rn and ¢n vs kd, 0'0 or ej , 

or A. Many of the parameter values were chosen to 
compare with those in 1. 

Figures 2-4 are plots of Rn and ¢n (from - 11 to 11) vs 
kd with A == 0.63 and Q o = Sinei == 0.1 (near normal 
inCidence, Fig. 2), 0.707 (450 incidence, Fig. 3), and 
0.99619 (near grazing incidence, Fig. 4). The values 
are considerably different from those in I, and the 
oscillatory behavior in I is not as evident here. 
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Figure (2a) illustrates that specular return can re­
main near maximum over a very broad range of kd 
values, whereas Fig. (3a) illustrates a resonance­
type effect in Ro at kd £;0 4.2 and a subsequent rapid 
interchange of energy between specular and back­
scatter. The latter is an illustration of the Wood S­
anomaly. Figure (4a) shows more oscillatory be­
havior than the other figures. In all three figures the 
far backscatter reflection coefficients were generally 
larger than the other reflection coefficients with the 
exception of the specular one. Also noticed is the 
correlation between kd points where R.. go through 
minimum values and the kd points where a2 1>nl 
o(kd)2 = O. The magnitude of an R" at .its minimum 
also correlates to the value of o1>nla(kd) at the Rn­
minimum point. These effects were also noted in I 
and will be more thoroughly discussed elsewhere. 
Finally, the kd values imposed no restriction on the 
evaluation of the model. 

In addition to the periodicity of Rn and 1> .. as a func­
tion of kd, Fig. (5a) illustrates the Brewster angle 
effect at kd R: 7. 5 and kd R: 23. 5. This is the vanish­
ing of the specular reflection coeffiCient Ro and, 
since, there is no energy lost, the full conversion of 
the energy into the backscatter direction, the only 
other available propagating grating order for the in­
dicated parameters. The phase correlation discussed 
in the previous paragraph is also observed in Fig. (5b). 

/.0 
\0) 

Ro 

09 

0.8 
Q c t O.l 

0.7 A ~ D.63 

06 

ocr:. 05 
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0/ 
R_I 

R, R, 
0 

2 3 4 5 6 7 8 9 10 
.d 

0 
« 
~ 

c -s-
-I 

FIG.2. Reflection coefficients R n, (a), and phases ¢n' (b), plotted vs 
kd with A '" 0.63 and (Yo = 0.1 (9j "" 5.8'). 
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Figures 6-9 illustrate the variation in Rn and 1>n as 
the incident angle 8i (or its sine, (Yo) is changed. 
Again note in Figs. (6a) and (8a) that, except for the 
specular reflection coefficient, the far backscatter 
amplitude predominates. Also at (Yo R: 0.9, both 
figures exhibit Rayleigh anomalies. For (Yo> 0.9, 
the energy interchange between Ro and the far back­
scatter reflection coefficient is an example of the 
Wood S-anomaly. Figure (7a) illustrates the Wood S­
anomaly with a partial Brewster angle effect. A near 
standing wave pattern is set up. The corresponding 
figure in I showed Ro nearly constant over the full 
(Yo range. The phase behavior in Figs. (6b), (7b), and 
(8b) is much less predictable than in previous figures. 
Several phase jumps of 1r or approximately 1T are 
shown, but they do not appear to be correlated with 
significant reflection coefficient effects. Figures 
(9a) and (9b) are plots of the backscatter reflection 
coefficients R-2 and R-4' respectively, as the angle 
of the incident plane wave approaches grazing. The 
maxima in the reflection coefficients occur when the 
incident and scattered propagation vectors are paral­
lel and of course oppositely directed. A similar re­
sult occurred in 1. 

Finally, Fig. 10 illustrates the variation in Rn and <P .. 
as A changes. A Rayleigh anomaly occurs at A = 
0.8535 and an S-anomaly around A == 0.99. 

09- a o ' 0707 
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0.3 

02-

01 

R" 
4 6 7 8 9 /0 " 12 13 

kd 

a 
<l 

~ 

-S-C 

FIG.3. Plots of R., (a), and 1>., (b), vs kd with 11.= O. 63 ~nd ao = 
0.707 (OJ '" 45"). Resonance and S-anomaly effects are Illustrated. 
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FIG. 4. Plots of R n , (a), and <Pn , (b), vs kd with II = 0.63 and 00 = 
0.99619 (ei = 85°). 

FIG. 6. Plots of R n, (a), and <!In' (b), vs 00 for II = 0.63 
and kd = 2. The Wood S-anomaly and. Rayleigh ano­
maly are shown. 
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FIG.5. Plots of R n, (a), and <!In' (b), vs kd for A = 1. 2 and 00 = 0.61. The Brewster angle anomaly and 
kd-periodicity of Rn and <p.. are shown. 
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FIG.7. Plots of Rn. (a), and <Pn, (b), vs 01 0 for /I = 1 
and kd = 9. The Wood S-anomaly and a partial Brew­
ster angle anomaly are shown. 
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FIG. 8. Plots of Rn , (a), and <Pn , (b), vs 01 0 for /I = 0.95 
and kd = 3.2. The Wood S-anomaly and the Rayleigh 
anomaly are shown. 

FIG.9. Plots of backscatter reflection coefficients at 
near grazing incidence for (a) II = 0.99235 and (b) 
II = 0.49618. 
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FIG. 10. Plots of 11", (a), and <Pn, (b), vs II for (lIo = 0.707 (8i = 45") and kd = 10. A Rayleigh 
anomaly and a Wood S-anomaly are shown. 

4. SUMMARY AND CONCLUSIONS 

It has been shown how to calculate the fields scat­
tered and diffracted by a thin comb grating with 
Neumann boundary conditions and plane wave inci­
dence. The solution requires an iterative procedure 
and complex function theory. Reflection coefficients 
Rn and amplitude phases ¢n were evaluated as a func­
tion of incident angle, frequency, and corrugation 
depth. The various grating anomalies, the Brewster 
angle anomaly, Wood S-anomaly, and Rayleigh ano­
maly were illustrated as well as correlations be-

I J.A.DeSanto,J.Math.Phys.12, 1913 (1971). This paper will be re­
fe rred to as 1. 
R. A. Hurd, Can. J. Phys. 32,727 (1954). 
R. Mitira, S. W. Lee, and G. F. Vanblaricum, Intern J. Eng. Sci. 6, 
395 (1968) and R.Mittra and S.W.Lee, Allalytical Techniques in 

tween Rn minima and behavior of derivatives of ¢n 
with respect to the depth. The periodicity of the scat­
tered field as a function of corrugation depth was 
also illustrated. Finally, the procedure was highly 
accurate, and different parameter values imposed no 
restrictions on the evaluation of the model. 
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A generalization of Schur's treatment of projective representations is discussed for a very general class of 
representations occurring in physical theories: the projective representations by unitary and antiunitary opera­
tors. It is shown that for every finite group the projective unitary-antiunitary (PUA) representations can be ob­
tained from the ordinary unitary-antiunitary representations of another finite group. The construction of such 
a representation group is treated. As an example we apply the theory for the determination of irredUCible 
representations of subgroups of the Poincare group. The classes of PUA representations for all finite crystal­
lographic groups in spaces of dimension up to four are explicitly given. 

1. INTRODUCTION 

As is well known, not only representauons of groups 
are in use in physics, but also "representations up to 
a factor," equally often called "proj ecti ve represen­
tations" or "ray representations" (see, for example, 
Hamermesh1 ). For example, projective representa­
tions play a role in the theory of representations of 
nonsymmorphic space groups and are quite generally 
of importance for many quantum-mechanical systems 
because quantum-mechanical states are described by 
rays (rather than by vectors) of a Hilbert space. 
Such systems are systems of particles with half-in­
tegral spins (in connection with double groups), and 
those of charged particles in an electromagnetic 
field (in connection with gauge transformations2 ). 

It is also well known that the time-reversal trans­
formation leads to antiunitary operators in quantum 
mechanics. This gives rise to "corepresentations," 
which in the present paper will often be called "uni­
tary -antiunitary representations". They occur in 
symmetry considerations of systems with time­
reversal symmetry, for systems having a magnetic 
group as symmetry, and in the determination of co­
representations of space-time groups. The theory of 
projective representations of finite groups stems 
from Schur, 3 that of continuous groups was given by 
Bargmann.4 Corepresentations were introduced by 
Wigner.5 However, a still more general kind of repre­
sentations occurring in physics are projective repre­
sentations by unitary and antiunitary operators, that 
is, projective corepresentations. A general discus­
sion of these "PUA representations" was given by 
Parthasarathy6 for locally compact groups. In the 
present paper we want to discuss the general theory 
of PUA representations for finite groups in more 
detail. This case has already been considered by 
Murthy,7 who has not, however, formulated a general 
method for obtaining the so-called "factor systems" 
for the PUA representations, so that his treatment 
of the problem is incomplete. Our treatment is a 
generalization of that given by Schur.3 We will give 
a general constructive method to determine all pro­
jective representations and corepresentations of a 
finite group. In particular, for the crystallographic 
magnetic groups the classes of PUA representations 
are explicitly given. Finally, we comment on two 
applications of the general theory. 

We start with a discussion of the role of PUA repre­
sentations in physics. The states of a quantum­
mechanical system are in one-to-one correspondence 
with one-dimensional subspaces of a Hilbert space 
X, called rays. The rays are elements of the pro­
jective Hilbert space X. Notice that this is not a 
linear vector space. For any nonzero element >It E X 
the ray "<It is defined by 

J. Math. Phys., Vol. 13, No.3, March 1972 342 

"+ == {A'If I all complex numbers A}. (1. 1) 

The set of all rays + with 'If E JC is the projective 
Hilbert space JC. In JC one defines a kind of inner 
product by 

This definition does not depend on the choice of the 
representative 'If of 'If. An automorphism of X is an 
invertible mapping of JC onto itself which preserves 
this "inner product." For any unitary or antiunitary 
operator A on JC an automorphism A of :Ie is defined 
by A>It == (Aw). On the other hand Wigner has shown5 

that any automorphism A of X can be obtained in this 
way from a unitary or antiunitary operator. We de­
note by 'U(JC) the group of unitary operators on JC, by 
<l(Je) the group of unitary and antiunitary operators 
on :re, by (l(X) the group of automorphisms of :.rc, by 
'I1(:.rc) those obtained from a unitary operator, and by 
7T the epimorphism <leX) --) (l(:.rc) defined by (1TA)'If = 
(A+). (Since the theory of projective representations 
is closely related to that of group extensions, we will 
use a fair amount of terminology from group exten­
sion and cohomology theory. We refer the reader not 
familiar with these notions to HallB or McLane.9 

Some notions are defined in Appendix A, where we 
discuss also some concepts from the theory of finite 
groups.) If we only consider normalized states we 
can restrict the values of .\ in (1. 1) to U(l), the group 
of unimodular complex numbers, and leave out the 
denominator in (1. 2). That this does not have con­
sequences is shown in Appendix B. In the following 
we only consider normalized states. Then we have 
the commutative diagram 

1 _ V(l) ~ 'U(JC) ~ 'I1(X)-----+ 1, 

\I 1 1 (1. 3) 
1 ~ V(l) ~ (l(X) ~ a{JC) ~ 1. 

This means that any element A E 'U(JC) [respectively 
E (l(:.rc)] is the image under 7T of some A E '\l(X) 
[respectively E a(X)l. If two operators A and A' 
satisfy 1TA = 1TA', one has A' = ei<l>A for some 
e i </> E V(l). 

We define a projective unitary-antiunitary repre­
sentation (PUA rep) of the couple (G, H), where H is 
a subgroup of index 1 or 2 in the group G, as a map­
ping P: G --) a (JC) such that (i) P = rrP is a homo­
morphism of G in (l{X), and (ii) P(H)C 'U{JC) , p{G-H) 
rt 'U(X). In an analogous way one can define a pro­
jective linear-antilineal' representation of (G, H) as a 
mapping of G on a set of linear and antilinear opera­
tors, which mapping is a homomorphism up to a non­
zero constant and which maps H on linear operators, 
G-H on antilinear ones. An ordinary unitary-antiuni-
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tary representation (UA rep) of (G, H) is a PUA rep 
of (G, H) which is a homomorphism. A projective 
representation of G is a PUA rep of (G, G). Some­
times P = rrP is also called a projective represen­
tation (in :K!). 

When P is a PUA rep of (G, H) in :K!,R a group, 
o : R ~ G an epimorphism, a UA rep D of R in JC is 
called a lifting of P if D = Pa. Schur has shown that 
for a finite group G there exists a group R such that 
any projective unitary representation P of G can be 
lifted to an ordinary unitary representation of R. We 
will show that the same holds for PUA reps of finite 
groups. We will give a construction of such a group 
R. The kernel of 0 is called the comultiplicator 
M(G, H). For PU reps it is just Schur's multiplicator. 
One has the commutative diagram (whose rows are 
exact sequences) 

1-M(G,H)-R ~ G _1, 

(1. 4) 

1_ U(1) - Ci(JC)~ 11(3C)-

Any irreducible UA rep D of R will give a PUA rep 
P of G by P = Dr, if r is a section r : G ~ R. 

The importance of PUA reps for physics will be 
clear. As Wigner has shown a symmetry group G of 
space-time transformations for a physical system 
induces a group of automorphisms of :K! which forms 
a PUA rep of G. More generally, the symmetry group 
of an operator A on 3C is the group of all unitary and 
anti unitary operators on JC commuting with A. This 
symmetry group is of infinite order because it con­
tains the group of all scalar unimodular operators 
(phase factors). The projection of this symmetry 
group on 11 (3C)is a group G of automorphisms of :re. 
Choosing a section s : 11(3C) ~ Ci(JC), one obtains a PUA 
rep of G. This group G may very well be finite. 

2. PUA REPRESENTATIONS 

Consider in JC a PUA rep P of a couple (G, H) or, as 
we also say, of a group G with respect to a group H. 
Since rrP is a homomorphism, one has for any 0', (3 E 

G an element w(O', (3) E U(1) such that 

P(O')P({3) = w(O', (3)P(O'(3). (2.1) 

The mapping w: G x G ~ U( 1) is called a factor sys­
tem. Because of the associativity of the product of 
operators one has for any 0', (3, I' E G 

w(ev, (3)w(O'(3,y) = w(O', (3y)w({3,y) if 0' E H 

w(O', (3y)w*({3,y) if 0' E G-H. (2.2) 

Now we define a mapping cp of G on the group of auto­
morphisms of U(1) by 

cp(O')A == Aa = A if 0' E H 

A-1 if 0' E G-H (2.3) 

For any A E U(1). The mapping cP is a homomorphism. 
Using Eq. (2. 3) one can write Eq. (2. 2) as 

w(O', (3)w(O'(3,y) = w(O', (3y)wa.{{3,y), O',{3,YEG (2.4) 

which expression means that w is a 2-cocycle (cf. 
Appendix A for definitions of some cohomological 
concepts). We denote the group of n-cocycles with 
arguments in G, values in U(1), and the action (2.3) of 
G on U(1) by Zj}(G). From the action of G follows the 
action of the integral group ring ZG on U(1) by 

Aa +8 = Nx. A8, Ama = (Aa)m, any A E U(1), integer m. 

When H = G the action of G on U(1) is the trivial one. 
In that case we have a PU rep. 

The PUA rep P gives a homomorphism P = rrP. 
The same P is obtained from a PUA rep P' if and 
only if there is a 1-cochain e: G ~ U(1) such that 

P'(O') = e(O')P(O'), VO' E G. (2.5) 

The PUA rep P' determines a factor system w' re­
lated to w by 

u;'(0', (3) = e(O')e a({3)e-1 (a{3)w(QI, (3), Va,f3 E G. (2.6) 

This means that w'w-1 is a 2-coboundary: w'w-1 = lie. 
The group of n -coboundaries is denoted by BJj(G). 
The reps P and P' as well as their factor systems 
wand u;' are called associated. Any homomorphism 
P: G ~ 11(:JC) determines a class of associated PUA 
reps. If w E B~(G), there is an associated factor 
system which is identically 1, Le., the PUA rep P is 
associated with a UA rep. Then there is a section 
s :11(3C) ~ Ci(JC) such that the PUA rep sP is a homo­
morphism. 

The classes of associated factor systems are ele­
ments of the quotient group 

(2.7) 

Hn(G) is isomorphic to the comultiplicator M(G, H) of 
G with respect to H which is defined as a representa­
tive of the isomorphism class of Hn(G). If H = G it is 
just Schur's multiplicator. 

Theorem 1: In each equivalence class of factor 
systems of a finite group of order N there is a factor 
system consisting of Nth roots of unity. 

Proof: This follows from a theorem in cohomology 
theory which states that any element of H;(G, A) for a 
finite group G, a G-module A and n > 0 has order di­
viding N. This implies that wN is associated with the 
trivial factor system: 

w(O', (3)N = e(O')e a ({3) 
e(O'f3) 

for some e E C1(G). Then choosing e'(O') = e(0')-1/N 
one defines w' = wlie which is associated with wand 
has the property wN(a, (3) = 1 (Va, f3 E G). 

The notions of reducibility and equivalence are 
analogous to those for ordinary representations. The 
PUA rep P: G -) Ci(JC) is irreducible if JC does not have 
a proper G-invariant subspace. The PUA reps P1 
and P 2 are equivalent if there is a unitary operator 
U ECU(JC) such that U-1P1 (O')U = P2 (a) (Va E G). The 
PUA reps P l and P 2 are similar if there are a uni­
tary operator U and a 1-cochain e E C1(G) such that 
e(0')U-1P1 (O')U = P 2 (0'). Equivalent representations 
have the same factor system. The factor systems of 
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similar PUA reps are associated. To find all non­
similar PUA reps of a finite group G with respect to 
H one calculates first HU (G) and determines for one 
factor system from each equivalence class the non­
equivalent PUA reps with these factor systems. The 
first step is discussed in Sec. 3, the second one in 
Sec. 4. 

For two linear operators A1 and A 2, or two antilin­
ear operators B1 and B2 on vector spaces V 1 and 
V2 , respectively, one defines the Kronecker products 
A1 ® A2 and B1 ® B2 on V1 ® V2 by (A1 ® A 2) 
(x ® y) = (A1 x) ® (A2y) and (B1 ® B2 )(x ® y) = 
(B1 x) ® (Bv )' Then A1 ® A2 is a linear operator 
and B1 ® B2 an antilinear one. This implies that if 
P 1 and P 2 are PUA reps of (G, R), the operators 
(P1 ® P 2 ) (O!) = P1 (a) ® P 2 (a) form also a PUA rep 
of (G, H). If Wi is the factor system for Pi (i = 1,2), 
the factor system of P 1 ® P 2 is w1 w2 • Consider a 
one-dimensional space JC, an antilinear operator (1 on 
JC with (12 = l,and a l-cocycle c E Z}(G). Then Pc (a) = 
c(a) for a E H, Pc(a) = c(a)8 for a E G-H gives a 
one-dimensional PUA rep Pc of (G,R). Then we see 
that two PUA reps P 1 and P 2 with the same factor 
system are similar if and only if P1 is equivalent 
with the product PUA rep Pc ® P 2 for some l-cocycle c. 

3. DETERMINATION OF THE COMULTIPLICATOR 

We will determine all nonassociated factor systems 
for PUA reps of a finite group G with respect to H. 
We use the close relationship between p:r;'ojective 
representations and group extensions. When A is an 
Abelian group,B an arbitrary finite group, and ¢ a 
homomorphism of B into the group of automorphisms 
of A, any extension of A by B determines a factor 
system m E Z~(B,A) and conversely each 2-cocycle 
til determines a group extension with product (a, a) 
(b, (3) = (a' ¢(a)b' m(a, (3), a(3). Now we consider an 
extension of U(I) by G where the action of G on U(I) 
is given by Eq. (2.3): 

1 ~ U(I) -----7 K ~ G -----,> 1. (3.1) 

Any extension (3.1) gives a factor system. On the 
other hand, equivalent extensions determine factor 
systems which differ by a 2-coboundary. Therefore, 
there is a one-to-one correspondence between the 
nonassociated factor systems of PUA reps of (G, H) 
and the nonequivalent extensions (3.1). 

Now suppose that G is generated by II generators 
0'1' ••• , a", Furthermore, G is defined by r defining 
relations <I>i (a 1 , ••• , a,,) = E (i = 1, .•• , r). Take a 
section r: G -7 K and replace in the relations 
<I>. = E everywhere 0' by r(a). Because crr(O') ::::: a E G 
o~e has cr<I>i(r(a1), ••• , r(a ll )} ::::: crr(f) = E. This im­
plies that <I>i(r(a1)' ••• ,r(a 11» belongs' to· the kernel of 
cr, i.e., to U(I): 

i= 1, ... ,r. (3.2) 

For another section r' there is .. l-cochain U E C1(G) 
such that r'(a) = u(a)r(a). USing the relations 
r(a)cr(a)-l = ca.(c E U(I), a E G),one has elements 
1Tj (a j ) from the integral group ring ZG such that 

<I>i(r'(a1),'" ,r'(a,,»::::: <I>i(u(0'1)r(a 1), ..• ,u(a,,)r(a,,» 

IT" ()'lTi<a.y I = g.. u a· = gj • 
, J=l J 

(3.3) 
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According to a theorem by HallS elements gi"" ,gr 
E U(I) determine an extension if and only if 

(3.4) 

whenever elements hi' ... , hr E ZG are solutions of 
the equations 

r 

L; hi 1Ti (a j ) ::::: 0, 
;=1 

j = 1, ... , II. (3.5) 

Moreover, equivalent extensions are determined by 
sets {gJi=l ..... r and {g;}i=l .... ,r if and only if there 
are elements u(a1 ), ••• , u(a) E U(I) satisfying 
Eq. (3.3). 

The solutions of (3.5) form a left ZG module.' We 
suppose that this module is generated by the sets 
{h~}, ... ,{ht}. The sets <P = {gJ form an Abelian 
group by 

(3.6) 

A subgroup is form~d by those solutions <I> which are 
equivalent to {gi ::::: I} = <I>o. Because of the action of 
G on U(I) one has with a mapping E : Z G --? Z defined 
by 

(3.7) 

the relation 

The mapping of the group ring elements hi and 1Ti (a) 
gives the integers 

mij = E(1Ti (a), 

k ij = E(h{), 

i = 1, ... , rj j = I, ... , II, 

i = 1, ... , rj j = 1, ... , k. 

Then Hall's theorem can be stated in the following 
form. 

Theorem 2: The group Hi(G) is isomorphic to the 
quotient group 

{<I>\gi = /i1 c'j'ii, i = 1, ... ,r, some cl"" ,c" E U(I)}. 
(3.8) 

The elements 1T. (a.) are found from the defining re-
'1. ( lations, the elements h/ from Eqs. 3.5). They make 

it possible to determine arbitrary extensions for 
any ZG module A. For all four-dimensional crystal­
lographic magnetic point groups (i.e., also for n-di­
mensional crystallographic point groups for n < 4) 
they are given in Ref. 10. From the tables given 
there the integers "Iij and k i; are immediately found 
using Eq. (3. 7). Then Hi(G) tollows from Theorem 2. 

As an example we determine the comuitiplicator of 
the dihedral group D2 with respect to a subgroup C2 • 

The group D2 is generated by a 1 and a 2 with de­
fining relations a~ = a~ = (a1 ( 2 )2 = E. For. the sub­
group C 2 we take the group generated by a 1 • The in­
tegers mij and kij are m 11 = k22 = k 33 = k24 = -k3 4 

= 2 and otherwise zero. This means that g~ = g~ = 
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T ABLE I. Comultiplicators of crystallographic point groups and Shubnikov point groups. a 

================= Defining relations ===============.==== 
G H G ~ H + all M(G, H) ~ q "n 

a k g, 
~l ("mm "y,,-l y ~~-ly 1i2 ,,6(>-1 ~1i~-11i yliy- 11i 

o 
o 
1 

o 

U2n + 1 

± 1 

UZn + 1 

± u 2n 

gs g6 g7 g8 gg g,O 

± 1 = ± 1 

C 2n 

DZn+l 

D2n 

D3 

D 2n 

D 2n 

u2n ± 1 ± 1 

± 1 £)2 ± 1 

T 

o 
o 
C Zn X C 2 

CZn x C z 
C Zn X C z 
D2n X Cz 
D 2n X Cz 
D. X C2 

D 2n X Cz 
T x C2 

T X C 2 

Ox C2 

Ox C2 

Ox C2 

T 

o 
T 

e2n x Cz 
C2 • 

en x C2 

D2n X Cz 
D211 

D2 X C 2 

C2n X Cz 
T x C2 

T 

Ox C2 

o 
T X C2 

y 

y 

y 

y 

C Zn X Cz X Cz C 2n X Cz X Cz € 

C 2n X C 2 X Cz eZl! x Cz 
C.XC2 XC2 C2 xC2 xC2 " 

D2n X C2 X Cz D Z1j x Cz X Cz E 

D Zn x C z X Cz D Zn x C z 
D2n X Cz X Cz C 2n X Cz X Cz f3 

DZXC2XC2 a 

TXC 2 xC2 

Ox C2 x C 2 T X C 2 

oxC2 xC 2 0XC2 xCZ 

Ox C2 X C 2 0 X C 2 

OXC2 xC2 TXC 2 xC 2 " 

3 

4 

4 

4 

4 

4 

6 

± 1 

± u 2n 

± 1 

± u 2n 

± u 2n 

± 1 

u 2n 

(-I)'u 3 

± u4 

± u4 

± 1 

u 2 • 

± u 2n 

± 1 

± u 2n 

± u2n 

1/ 2n 

± 1 

(-I)'u 3 

± u4 

± u4 

± 1 

± v 2 

v 2 

± V2 

± 1 

± U 2 

± (_I)'v 2 

± 1 

± 1 

± 1 

(_I)<"u 3u3 

U2 V2 

UZU2 

uZ ± £)2 

± 1 UZ 

v 2 ± 1 

w2 ± w Z 

± 1 uZ 

w2 ± 1 

w2 ± WZ 

WZ WZ 

(-1)' (-I)'u2 

w2 ± WZ 

(-1)' u2 

± 1 

± w2 

± w2 

± 1 

± w Z 

± w 2 

± w 2 

± 1 

± 1 

± w 2 

v2 

± w 2 

± 1 

(_I)'u 2 

w2 

(_1)6 U2 

± w2 

± w2 

± 1 

± w2 

22 ± 22 

± 1 UZ 

z2 ± 1 

z2 ± ;;::2 

± 1 UZ 

Z2 i. z2 

22 

22 

± 1 

22 

± 22 

± 1 

± z:'::: 

22 

± 22 

± w 2 

± 22 

± 22 

± W 2 

± 22 

± z:'::: 

± 22 

(-1)' (-I)'u 2 (_I)'v2 ± w 2 

22 ± 22 22 ± Z2 

(-1)' u2 

22 ± 1 

a u, v, w, Z E:. U(I), representatives .p from all cl~sses are found by putting u .= v :::: W :::: Z :::: 1, the triple 11.,l, m is Iz22 3f~ D n , 323 fo~ ~t 432 for 0, 6, ~1= 0 o~ l. 
Example: There are 22 ~ 4 classes of nonassoc.ated PVA reps of T x C2 with respect to T. They are given by P (,,) - [P (a)p (~)] ~ P (mp(y)~ (m P (1') -
P(,,)P(y)P(,,)-IP(y) = I andp(~)2 ~ ± 1. The class given byP(,,)3 ~ u31,P(~)2 ~ v2 1,[P(a)p(m)3 ~ u3v 31,P(y)2 ~ I.P(a)P(y)P(,,) IP(y) ~ u I, 
p(mp(y)p(~t'P(y) ~ v2 j is associated to a VA rep. The operator pry) is antiunitary. 

g~g3Z = 1 and gl is arbitrary. A set {gv gz = ± 1, 
g3 = ± 1} is equivalent to {1, ± 1, ± 1} choosing 
gi = u(a)2g1 with u(a)Z =gi1. Consequently the clas­
ses of nonequivalent 4> 's have representatives {g 1 = 
1,gz = ± 1,g3 = ± 1}. Hence M(G,H) ~ Cz x C2 has 
four elements. 

In the same way one finds the comultiplicators for the 
other crystallographic groups. They are given in 
Table I. Notice that for a cyclic group the co­
multiplicator is only trivial if H = G, i.e., for PU reps. 
Moreover, any M(G,H) in the list is a direct product 
of 1< cyclic groups C 2' Hence any factor system is of 
order 2. The PU reps of three-dimensional crystallo­
graphic point groups were already determined by 
Do ring 11 and Hurley.12 In the latter paper explicit 
matrix representations are given. 

Although the group (3.8) is isomorphic to M(G, H), 
one particular solution 4> does not determine a factor 
system uniquely. Define a subgroup of Cl(G) by 

Cl(G) = {c E Cl(G)1 c(a) = 1,j = 1, ... , II}. 

The group BJ(G) = 6Cl(G) is a subgroup of Bn(G). 
According to Ref. 7, p. 52, [case 2i J one has 

Theorem 3: An element 4> satisfying 

O
r k .. 

gi Z) = 1, 
i= 1 

j = 1, ... , II, 

determines an element of ZJ (G)j BJ (G). This means 
that 4> determines a factor system up to an element 
of BZ (G). This proves that it is justified to give the 
nonequivalent factor systems by nonequivalent 4>'s. 
To determine one factor system corresponding to 4> 
one chooses for any element a EGa word a = Wa 

(a 1 , •.• , au) in the generators. Then take a section 
r in such a way that r(Q) = wa (r(a1), ••• ,r(a u ». One 
has for the factor system w(a, (3) = r(a)r«(3}r(a(3)-1 = 
wa(r(al),···, r(au»wB(r(a 1)"", r(au»w';l(···) "" 
Wa,a(r(a 1 ), ••• , r(a u»' As a maps Wa ,i3 on E, it is the 
product of certain 4>i(r(a 1 ), ••• , r(a u» and conjugates 
r(a)<I>i(r(a 1), ••• , r(av»r(a)-l = <I>f'{r(a 1), ... , r(a u »' 
Then one has 

w(a, (3) = r r 
o <I>;(r(a1), .. ·,r(au»Ci(a,B) = n g{i(a,B) 
i=1 i=1 

for c i (a,(3) E ZG. (3.9) 

As an example we determine a factor system w cor­
responding to a given <I> for the PUA reps of (D 2 , C 2 ). 
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Choosing r(a l ( 2) = r(a l )r(a2) one has 

w(al' al) = r(a l )2 = gl = 1, 

w(a1' (2) = r(a1)r(a2)r(a2)-l r (a1)-1 = 1, 

w(a1' a1( 2) == r(a1 )r(a1a 2)r(a2)-1 == 1, 

w(a2' ( 1 ) = r(a2)r(a1)r(a2)-lr(a1)-1 

= r(a1 )-l r ( a1 )r(a2 )r(a1 )r(a2 )r(a2 )-2r (a1 ) 

== r (a1 )-1 g3g2"l r (a1 ) 
0. -a 

== g3 1g2 1 = (± 1) (± 1) = ± 1, 

w(a2' ( 2) = r(a2)2 = g2 = ± 1, 

w(a2, a1 ( 2 ) = r(a2)r(a1 ( 2)r(a1)-1 

= r(a1 )-l r (a 1)r(a2) 2r(a1 )r(a1)-2 

= g;lg11 = ± 1, 

w(a1a2' ( 1) == r(a1)r(a2)r(a1)r(a2)-1 == g3g2"1 = ± 1, 

w(a1 a 2, ( 2) = r(a1)r(a2)2r (a1 )-1 = g;l = ± 1, 

w(a1 a2, a1 ( 2) = g3 = ± 1. 

The nine values w (a , (3) are determined by the three 
components of q, once one has chosen r(a1 ( 2) = 
r(a1 )r(a2). Another choice would give an associated 
factor system. 

A second method to determine M(G, H) which does 
not require solution of Eqs. (3. 5) is the following. 

Lemma 1: H~(G) ~ H;(G, z). 

Proof: The group U(I) is isomorphic to the factor 
group of the additive group R of real numbers and 
the additive group of integers. One has 

O~Z~R ~R/Z~O 

and consequently a long exact sequence9 

••• ~H"q,(G,R)~H;(G,R/Z)~Hr1(G,Z) 

~ H;+l(G,R) ~ "', (3.10) 

where the action c/> on an element a of R, Z or G/Z is 
c/>(a)a = a(a E H), c/>(a)a = - a(a E G-M). Because G is 
finite and R divisible and torsion-free H~(G,R) = 0 
for n> O. Hence 

H'q,(G,R/Z) ~ Hr1(G,Z). (3.11) 

As U(I) "'" (R/Z) the lemma follows by taking n = 2. 

We now apply a reduction theorem by Eilenberg and 
McLane. 13 If C1(G,Z) is the group of l-cochains with 
integral values, one has the isomorphism 

H~+l(G,Z) ~ Hg(G,C1(G,Z», n> 0, (3.12) 

where C 1 (G, Z) is a G module with action a defined by 

[a(a)J](j3) = f ((3a) - f6(a), f E C1(G,Z), a,{3 E G. 
(3. 13) 

Because f is an integral-valued function with f(E) = 0, 
the group C 1 (G, Z) is isomorphic to ZN-1, where N is 
the order of G. It is the sub ring of ZG of all functions 
with f(E) = O. Then we have the following lemma. 
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Lemma 2: For a finite group G one has the fol­
lowing isomorphisms: 

M(G,H) ~ H~(G) ~ H1(G, Z) ~ H~(G,ZN-1). (3.14) 

The determination of M (G, H) is equivalent to that of 
H~ (G, ZN-1). In Ref. 10 a technique was developed to 
determine H~ (G, zn) for finite groups and an arbitrary 
homomorphism a: G ~ Aut (zn). The matrices a (G) 
can be found by choosing a basis a1 , ••• , aN in the 
integral group ring. The elements a 2, ..• ,aN form 
a basis for C 1 (G, Z). With respect to this basis 

(3. 15) 

4. REPRESENTATION GROUPS 

In this section we show the existence of a group R 
such that any PUA rep of (G,H) can be lifted to an 
ordinary UA rep of R. First we treat a generalization 
of Schur's lemma. 

Lemma 3: If a unitary operator 5 satisfies 5U = 
U5, A5-1 = 5A for any unitary U and antiunitary A 
from a set fJ of operators on an .g..invariant irredu­
cible ISpace JC, it is a scalar multiple of the identity 
operator. 

Proof: Define a new operator T = 5 - A n for some 
eigenvalue A of 5. We show that the kernel of T is fJ­
invariant. If x is an eigenvector of 5 with eigenvalue 
A , it belongs to the kernel of T and it is an eigenvec­
tor of 5-1 with eigenvalue A *. Then for any A, U E fJ 
one has TUx = UTx = 0 and TAx = 5Ax -;\Ax = 
(A5-1 - AA *)x = (A5-1 - A *J)x = O. Since JC is irredu­
Cible, the kernel is either JC or O. The latter is im­
possible as any eigenvector with eigenvalue A belongs 
to the kernel. Hence the kernel is JC, Le., T = 0 and 
5 = AI. 

Now we consider an extension 1 ~ A ~ R ~ G ~ 1 such 
that the action c/> of G on the Abelian group A is given 
by cp(a)a = aa = a, cp({3)a = a6 = a-1 for any a E A, 
a E G, {3 E G-H. We denote the subgroup R which is 
mapped by (J on H S; G by U. Taking a section r: G ~ 
R one has r(Q)r({3) = m(a, (3)r(Q(3) and r(Q)ar(a)-l = 
aa(a E A; a, (3 E G), where m is a 2-cocycle. Another 
section r' given by r(Q) = u(Q)r(Q) for some U E C1 

(G, A) gives r'(Q)ar'(Q)-l = aa and m' = m{)u. 

If D is an irreducible UA representation of (R, U) in 
a space JC, one has for any a E A, a E H, (3 E G-H 
the relations D(a)D(a) = D(a)D(a) and D(a)D({3) = 
D(f3)D(a)-l. Notice that A considered as subgroup of 
R belongs to U. Therefore, D(a) is a unitary operator 
satisfying the conditions of lemma 3. This means 
that D(a) = X (a)l for some l-cocycle (homomorphism) 
X E Zl (A) with values in U(I), where the action of 
A on U(I) is trivial. The UA rep D of R gives a PUA 
rep P of (G, H) by choosing a section r: G ~ R and the 
definition P(a) = D(r(Q». The factor system is 
given by 

w(a, (3)] = P(a)P({3)P(Q{3)-l = D(r(Q)r({3)r(aj3)-l) 

= D(m(Q, (3)) = X(11l(a, (3))1 
or 

w(a, j3) = xf.rn (a, (3)). (4.1) 
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Because 

wo.({3, y)w(a, {3y)w-1 (a, (3)w-1(a(3, 1') 

= X(m 0.«(3, 1')m (a, {3y )m-1 (a, (3)m -1 (a(3,1')) 

= X(e) =:; 1, 

w is a 2-cocycle: WE Z1(G). 

Another section r' with r'(a) =:; u(a)r(a) gives a 
factor system w' = w6e with e(a) = X(u(a». There­
fore, X maps the cohomology class [m) on the co­
homology class [w]. 

The group Z~(A) is the same as the character group 
A * which is Isomorphic with A: By this isomorphism 
to any a E A corresponds a 1-cocycle a*. For any 
element of A one defines pea) = (a*(m»), the 
cohomology class of a*(m) =:; w. Since a* maps the 
cohomology class of m on that of w, p does not depend 
on the section r. The mapping p: A ---? Hfi(G) is a 
homomorphism because 

pia) pCb) = [a*(m)][b*(m)] = [(ab)*(m)) =:; p(ab). (4.2) 

Some elements of Z 1 (A) are restrictions to A of ele­
ments of Zli(R), crossed homomorphisms R---? U(1). 
We define a subgroup B ~ A by 

B =:; {a E A I a* E Z 1 (A) is the restriction to A of a 

X E ZO(R)}. (4.3) 

If pea) = pCb) for a, bE A, one has a*(m) = 6C'b*(m) 
or (ab-1 )*(m) E BH(G). Then the mapping X:R---? U(1) 
defined by 

X(ur(y)) = (ab-1 ) *(u)' c(y), U E A, I' E G 

is a crossed homomorphism since 

X(ur(y)vr(6)) = X(uvYtn (I', 6)r(y6)) 

= (ab-1 ).*(uvY)·c(l1cT(6)c(y6)-1·c(y6) 

= (ab-1 ) *(u)· c(y )o(ab-1 ) *(v)y· cr(6) 

= X(ur(y)XY(vr(6)). 

Since X E zJ (R) and x(A) = (ab-1 ) *(A), one has ab-1 E 

B. On the other hand if ab-1 E B, there exists a 
X E Zo (R) such that X(A) = (ab-1 ) *(A). Define da) = 
x(r(a)). Then 

w(a, (3) = (ab-1 )*(nt(a,(3)) = x(r(a)r({3)r(a{3)-l) 

== c(a)eo.({3)c(Ct{3)-l = 6e( a,(3). 
(4.4) 

Consequently a* and b* determine associated factor 
systems if and only if ab-1 E B. This means that 
Kerp == B. Hence 

A A 1m =- ==-. (4.5) 
p Ker

p 
B 

Any irreducible UA rep D of (R, U) gives a PUA rep 
P of (G, I-I) by Pia) = D(r(a). The factor system of 
P is given by w = a*(m) for some a E A. If any PUA 
rep of (G, H) can be lifted, this means that p: A -! H~(G) 
is an epimorphism. Then one has for the orders of 
the groups: IH~(G) I = lImA 1== IA 1·IBI-1. For the 
order of R one has IR 1== IAI'IGI =:; IH§(Gll'IBI'IGI 
'" IH§(G) I ·1 G I. Hence if R gives all PUA reps of 

(G, H), it is at least of order IHg(G) /./ G I. We will 
construct a group R with this property for which the 
order is minimal. We call such a group a (co)repre­
sentation group. It is an extension of M(G,H) by G. 

Suppose G is generated by a l' ... , av with defining re­
lations elli(al> ••• , au) =:; E(i = 1, ..• , r). The Abelian 
group Hg(G) is determined by Theorem 2. As any 
finite Abelian group it is isomorphic to a direct pro­
duct of cyclic groups: 

H2( ~ s 
H G) - n Cd , (4.6) 

J =1 J 

where Cn is a cyclic group of order n. If the generator 
of Cd' corresponds via this isomorphism to a solu-

J 

tion ell; of (3.4), the elements of Cd' correspond to the 
solutions (elljlm(o .:;; m < d j ). Beca'hse (ellj)dj is equiva­
lent to CPo = i.gi = 1, i = 1, ... , r} there is a solution 
ell j equivalent to ell'; such that {elllj = ello. Then the r 
components of ellj are djth roots of unity. If ej is a 
primitive ~th root there is an inte_ger nij such that 
the i th component !Iij of {ellj } satisfies -

An arbitrary solution of (3. 4) is equivalent to 
s 

ell = n ellPj 0 .:;; P
J
· < d

J
.• (4. 7) 

j=1 J ' 

Consider a group A which is isomorphic to H2(G) 
(4.6) generated by 01' ••• ,as' Define r elem:nts of 
A by 

5 

F,. == n anij i - 1 r }; jo1 J' -, • •• • 

Because ellj is a solution of (3.4), one has 

or 

r k n g . .iP = 
i=1 '} 

r 
6 n .. k. == 0, mOdd

J 
.• 

;=1 I) 'p 

Consequently 

any j, p 

(4.8) 

r r s 
n f.k ip = n n a)niJkiP = 1, '<fp. (4.9) 
i=1 • ;=1 j=1 

This means that {Ji} defines an extension of A by G: 

1-!A--jR-!G-!1, 

When P is a PUA rep of (G, H) with factor system w, 
one can define an element u E Zl(A) by u(a.) =:; ePJ. 
Then J 1 

s s s 
u(Ji) == n u(a.)n;j =:; n e~;jPj =:; n g?l = g. 

j=l 1 j=1) j=1 ') ., 

which is the ith component of ell (4.7). As ell deter­
mines a class [w] E HJ(G) and {Ji} a class [m] E 

H2(G, A), there are elements WE zg(G) and m E 

Z~(G, A) such that w(a,(3) = u(m(O!,{3). Then the map­
ping D:R --7 Ci(JC) defined by D(ar(O!) = X(a)P(a) is a 
UA rep of (R, U) because 

D(ar(a»D(br(/3» = x(a)P(O!)X(b)P«(3) 

= X(a)Xo.(b)P(Ct)P«(3) = x(abo.)w(a,{3)p(a{3) 

= X(abo.m(a,{3)P(a(3) = D[ abo.m(a {3)r(a(3)] 

= D[ ar(O!)br({3)]. 
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TABLE II. Character table for the dihedral group D 4' 

{e} {a} {<Yl(i"2' a(i"1(i"2} {(i"l,a(i"l} {"'2,a"'2} 

r1 1 1 1 1 1 
r2 1 1 1 - 1 -1 
r3 1 1 -1 1 -1 
r4 1 1 -1 -1 1 
r5 2 -2 0 0 0 

Hence the PUA rep P can be lifted to the UA rep D. 
As IR i = IHJ(G) 1·1 G I it is a group of minimal order. 
Hence it is a (co )representation group. Now we have 
proved the following theorems. 

Theorem 4: For any finite group G there exists a 
finite groupR such that any PUA rep of G with respect 
to a subgroup H can be lifted to a UA rep of R with 
respect to a subgroup U. The group R is an extension 
of the comultiplicator M(G, H) by G, where the action 
of G on M(G, H) is given by a<> = 0, of!:::: a-1 for any 
o E: M(G, H), a E: H, (3 E: G-H. The canonical epimor­
phism a:R ~ G maps U on H. 

Theorem 5: If G is generated by a 1 , ••• , au with 
defining relations <p;(a1 , •• " a) = E(i :::: 1, ... , r) and 
if s 

M(G,H) "'" n Cd.' 
)=1 ) 

a (co)representation group R is generated by 
llt, .. " as' <Y1 ,·.·, LYv' with defining relations 

d. aj ) :::: e, j :::: 1, ... , s, 

1 ~ j, k ~ s, 

i:::: 1, .•• , r, 
(4.10) 

OjOk = akaj , 

<Pi (a1 ,···, a) = ii, 
0' aa-1 :::: a~p 

p ) P )' j :::: 1, ... , s; P = 1, ... , IJ, 

where fi is given by Eq. (4. 8). Any irreducible PUA 
rep of (G, H) can be lifted to an irreducible UA rep of 
(R, a-1 (H». 

The UA reps of (R, U) are found from the unitary reps 
of U.5,14 When D is an irreducible UA rep of (R, U) 
in X, either X is irreducible under U (case 1) or it 
is reducible in two nonequivalent (case 2) or equiva­
lent (case 3) components. When a U-irreducible sub­
space carries a representation with character X, one 
distinguishes the three cases by (R :::: U + j3U): 

L; X«{3a)Z):::: order N of U in case 1 

<>EU 0 in case 2 

-N in case 3. (4.11) 

On the other hand, if one has a unitary representation 
of U in Je for which Eq. (4. 11) gives N, the space X 
carries an irreducible UA rep of R. If it gives 0 or 
- N, there is an antiunitary operator 7;., such that 
X + T/3 JC '" X carries an irreducible UA rep of R. 
From this it follows that one has to consider the uni­
tary representations of U. We can choose the genera­
tors and relations of G in such a way that a1' .•. '0v-1 

generate H and a" E G-H. Then U is generated by 
a1' ..• , as' a1 , ••• , a v-1 with defining relations as in 
(4.10), leaving out the relations in which a v occurs. 

As a first example we consider the PUA reps of the 
cyclic group Cz with respect to its unit element. 
From Table I it follows that the comultiplicator has 
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two elements. Hence the corepresentation group is 
generated by a and a with relations aZ = e, (iz :::: a, 
aaa-1 = a-1 = a. This is the cyclic group of order 
4 generated by a. The subgroup U is generated by a 
and is the cyclic group of order 2. This group has 
two irreducible representations: D±(a) = ± 1. As 
x(a2) + X(Naaa) = 2X(a) = ± 2, the representation 
space (one-dimensional) for D+ is irreducible for the 
UA rep, whereas the one-dimensional space for D_ 
gives a two-dimensional UA rep. Hence there are two 
nonsimilar PUA reps for Cz: one one-dimensional 
and one two-dimensional. The first is realized by the 
complex-conjugation operator 80 , the other by pea) = 
az 80 with 0z the second Pauli matrix. As is well 
known the first occurs for an even number of fer­
mions, the second for an odd number. These are the 
only two possibilities to represent the time reversal 
transformation by an antiunitary operator. 

A second example is the determination of the non­
similar PUA reps of the dihedral group D z with re­
spect to itself (PU reps). The group is generated by 
a 1 and a z with defining relations Qt = a~ = (a1a Z)Z = 
E:. According to Table I,the multiplicator M(G,G) is 
given by {gl = gz = l,g3 = ± I}. Hence the represen­
tation group R is generated by a, 0'1' 0'2 with defining 
relations 

a2 = at = ~ = e, (N1 (2)Z = a, 

O'10all = azoai 1 = a. 

It is the dihedral group D4 with eight elements and 
five classes. Its character is given in Table n. 
Choosing r(a1) = a1, r(a2 ) :::: a z , r(a1 O!z) :::: alaZ' 
r(E) :::: e one obtains five nonequivalent PU reps of 
D z. However, the four one-dimensional representa­
tions are all associated (cf. remark at the end of 
Sec 2). Hence there are two classes of nonsimilar 
irreducible PU reps of D z: one one-dimensional, one 
two-dimensional. The one-dimensional representa­
tion has trivial factor system. 

5. LIFTING OF A GIVEN PUA REP 

In Sec. 4 we showed that any PUA rep of (G, H) can be 
lifted to a UA rep of a corepresentation group. A re­
lated problem is the following. Suppose a PUA rep of 
G is given, e.g., as a set of operators commuting with 
a Hamiltonian (See, e.g., Ref. 2.) To apply the group­
theoretical methods one wants to extend this set to a 
group by adding appropriate phase factors. This 
means that one wants to lift the PUA rep. The smal­
lest group which gives this lifting is, in general, only 
a subgroup of a representation group. 

If P is a PUA rep with factor system w, the class of 
W generates a cyclic subgroup of M(G, H). As wd E: 
Bn(G) for some d, there is an equivalent factor system 
consisting of dth roots. In the same way as in Sec. 4 
one can define an extension of the cyclic group Cd 
by G: 

(5.1) 

If again G = {a1"'" 0v Icp.(ol' •.. , a v ) = c, i = 1, ... , 
r}, one has' . 

(5.2) 

In order to determine K one determines the smallest 
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nonnegative integer d such that 

gd == n u(a .)m ij for some U E: C1(G). 
, j~l ] 

Then define 

(5.3) 

which are dth roots. If a cyclic group Cd is generated 
by a, the elements 

(5.4) 

determine an extension (5.1). Any PUA rep with fac­
tor system equivalent to wP for some 0 .;; p < d can be 
lifted to a UA rep of K. Then quite analogous to 
Theorem 5 one has the following. 

Theorem 6: A PUA rep of (G, H) with factor sys­
tem w of order d can be lifted to a UA rep of (K, U), 
where K is generated by a, a l , ... , au with defining 
relations 

ad == e, 

'" (= -) - "i ~i ul' . f • ,Ciu - a , cf. Eq. (5.3), i == 1, ... , r, 

and U is the subgroup of K mapped on H by the 
canonical epimorphism a: K -) G. 

(5.5) 

6. UA REPS OF SUBGROUPS OF THE INHOMO-
GENEOUSLORENTZGROUP 

Important symmetry groups for physics are sub­
groups of the inhomogeneous Lorentz group. Among 
these groups are the ordinary space groups [sub­
groups of the Euclidean group 10(3)], the magnetic 
space groups [subgroups of 10(3) x J, when J is the 
group generated by time reversal] and space-time 
groups. They have a translation subgroup which is 
an invariant Abelian subgroup. The UA rep can be 
found by the method of induction1 5 sketched below. 
Here we will consider the UA reps of those groups 
which have a finite point group. Among others this 
includes the cases of unitary representations of space 
groups discussed, e.g., in Ref.16, and the UA reps of 
magnetic space groups.14 

We denote the group by G, its translation subgroup by 
T, its point group by K ~ GIT. The subgroup of G 
represented by unitary operators has point group 
H S. K, whereas the elements {a It} E: G with a E: K-H 
are represented by antiunitary operators. The trans­
lation subgroup T is represented by unitary operators. 
Consider an irreducible representation D(G). Since 
the irreducible representations of T are one dimen­
sional, the carrier space J(: of D(G) decomposes into 
a sum of carrier spaces :JC k of representations of T 
characterized by a vector k in the Brillouin zone. If 
1/.- E :K'.k and {all} E G, the element D({a Ill)1/.- belongs 
to :JC k , with k' == ak(== ak for a E H, == - ak for 
a E K-H),becauseD({Ela})D({olt})lP = exp(±ika) 
D({a I t}) l/;. Hence:JC == ED;:JC ki' wh{e:e k1 , .•• , T1s are 
the nonequivalent k vectors from ak I v a E fif. 
Moreover, if we define the group of k by 

G k == {{a It} E G I ak equivalent to k}, (6.1) 

the space :JC k is invariant under Gk • By the decom­
pOSition 

(6.2) 

one has D(g)D(gi):JC k S. D(g·):JCk if ggi == gjh E gjGk • 

Hence :JCk , • •• ,:JCk is a system of imprimitivity. 
The reprJsentatiori D(G) is found by induction from 
the irreducible UA reps D k of G k with the property 
Dk({E la}) == exp(ika)Dk({E IO}). Hence one can write 

Dk({a It}) == exp(ikt)P(a), 

where the operators P(a) form a PUA rep of the 
point group K k of G k' 

(6.3) 

P(a)P({3) = exp(i[a-1(k - ak)]t8 )P(a{3) (6.4) 

because P(a) does not depend on the nonprimitive 
translation to.' It is readily verified that w(a,{3) = 
exp{i[OI- l (k - ak)]t ll } forms a factor system. Con­
sequently the irreducible UA reps of G are deter­
mined by the "stars" kl' •.• , ks and the irreducible 
PUA reps (6.4) of K". To find all nonequivalent 
irreducible PUA reps one can use Theorem 6. The 
preceding sketch of the method of induction is only 
meant to indicate the line and to establish the factor 
system (6.4). 

If G has elements {OIl to. + a}, with a E: K, a E: Tand non­
primitive translation to., an equivale~t (affine _con­
jugated) group has elements {a la + tJ, with la = 
(1 - a)v + aa + to., where v is an arbitrary transla­
tion, aa E: T. For this equivalent group G one finds 
the UA reps from PUA reps of K with factor system 

. _ u(a)u u ({3) 
w(a,{3) = exp(i[a-1 {k - 0'/,)]t 8 ) = w{a,(3) ( ) , 

u a{3 (6.5) 

with U{OI) = exp(ia-1(k - al,)v). Hence equivalent 
groups determine equivalent factor systems. Con­
sequently Eq. (6.4) gives a homomorphism lPk from 
the group of nonequivalent systems of nonprimitive 
translations corresponding to the arithmetic point 
group rjJ(k) to H'§(K). This homomorphism lPk depends 
on I? For a symmorphic group Iml,l.-k = O. 

As an example we consider UA reps of a two-dimen­
sional nonsymmorphic magnetic space group from the 
arithmetic class R2'm 'm. It has a point group K 
generated by 

a 1 = (~ _~), a 2 = (--~ ~ ) 
from the isomorphism class D2 , and associated non­
primitive translations 

la l == (~), ta
2 
= (~), lu

1
u

2 
= (!). 

The elements 0'2 and 0'10'2 are combined with time 
reversal. The Brillouin zone is rectangular. For 
k = (7T, 7T) on the border of the zone the group Gk is 
the whole space group. Hence Kk = K "" D 2 • A group 
from the isomorphism class D2 is generated by 
a l , (\:2 with 

gl = P(a 1)2 == w(a1 , ( 1 ) 

= - 1, because (a l - 1)k' to. == - 7T, 
I 
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g2 :::: P(0!2)2 :::: w(0!2' 0!2) 

:::: -l,because (0!2 + l)k' t~ :::: 11, 

g3 :::: [P(0!1)P(0!2))2 :::: w(O!l 0!2' O!l 0!2) 

:::: 1,as 0!10!2 + 1 = O. 

Hence the PUA reps of D2 with factor system (6.4) 
are obtained from the UA reps of the extension B of 
C2 by K generated by a, al, a2 with defining relations 
a2 :::: (al a2 )2:::: 1, cq ::::a~:::: a, ala:::: aal , a 2 a:::: 
aCi2 • It is the group C4 x C2 of order 8, generated by 
Cil and Ci1 a2 • Its subgroup U mapped on € and O!l of 
K is the cyclic group generated by al • It has four 
nonequivalent irreducible unitary representations, all 
one dimensional: rv(a1 ) = i v-l (lI:::: 1, ... ,4). The 
corresponding UA reps of B are found using 
~hEU X«al <Y2h)2) :::: 2X(e) + 2x(ay) = 0(11 = 2,4) or 
4(11 :::: 1,3). The representations r land r 3 give one­
dimensional PUA reps of K with trivial factor system. 
The representations r2 and r 4 give together a two­
dimensional PUA rep of K with the nontrivial factor 
system determined by gl,g2,g3' Hence for k :::: (1f,1f) 
there is exactly one two-dimensional UA rep of 
R2'm'in. 

Notice that this method can also be used if primitive 
translations of the magnetic space group are com­
bined with time reversal. In this case one can take 
for T the intersection of G with the group of three­
dimensional translations. The elements of Tare 
called primitive translations. In the point group K 
there appears the time-reversal operator with a 
nonprimitive translation. As an example take the 
magnetic two-dimensional space group generated by 
the magnetic translation a' :::: (a, 0) and the non­
magnetic translation a2 :::: to, b). The group T has 
elements 2na{ + rna 2 (n, in integers), K consists of 
two elements: the unit E and the time reversal o!. The 
time reversal has nonprimitive translation la:::: ai· 
Then one can proceed in quite the same way as 
before. 
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APPENDIX A: SOME COHOMOLOGICAL AND 
GROUP-THEORETICAL NOTIONS 

A group G is said to be generqted by elements O! l' 
... , O! v if any O! E G can be written as a product of 
generators and their inverses. Any such product is 
called a word in the generators. Any word which is 
equal to the unit element E is a relation in the group. 
If G is completely determined by the relations <Pi 

(O!l"'" QI) = E, the relations <PI = E, ••• ,<Pv :::: E 
are defining relations. 

The functions on G with integral values form a ring. 
Formally these functions can be written as L: aEG rna QI 
(ma integer). Addition and multiplication are defined 
by (L:amaQl) + (L:anaO!):::: L:a(ma + n",)O! and (L:amaQl) 
(L:enB{3):::: L:am~O! with m~ = L:BEGme<me<-le' With 
these rules the set forms a ring called integral group 
ring ze. 
For a ring F an F module A is an Abelian group A 
for which a scalar multiplication with elements of F 
is defined which has to satisfy some distributive con­
ditions. A vector space over a field is a module for 
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which F is a field. When cP is a homomorphic mapping 
of a group G into the group of automorphisms of an 
Abelian group A, the image cP (O!)a of a is denoted by 
aa. This implies that A is a ZG module if one defines 
aa+B:::: ae<a B and arne< :::: (ae<)rn (integerm). 

When A is a ZG module, an n-cochain u is a mapping 
ex . .. xG -) A: U(O!l' ... , O!n) E A. The n-cochains 
form an Abelian group C;(G,A) by (u l 'u2)(O!l"'" 
Qln) = u~ (O!v ... , QI,,)u2(Qll' ... , Qln)' The groups 
CJi, (G, A) are connected by homomorphisms 
on: C¢(G, A) -) q,+l(C,A) if one defines (onu ) 

(O! l' ... , O! n + 1 ) = U a l 
( O! 2 ' ... , O! n + l) n :'=1 u (O! l' ... , 

O!iO!i+l"'" O!n+l)<-lJ 'U(O!l"'" Qln)<-l) n+j. The first 
three homomorphisms are 

(Oou)(O!):::: ul- a , (AI) 

(0 IU)(O! v 0!2) == u aj (0!2)u(QllQl2f1U(0!1)' (A2) 

(02u)(O!l' 0!2' 0!3) == Ue<l (O!l' 0!3)u(QlIQl2' 0!3fl 
-1 

U(O!l' 0!20!3)U(O!l' Ql2) . (A3) 

The homomorphisms on satisfy 0n+lOn :::: O. The ker­
nelof on is denoted by Z¢(C,A), its elements are n­
cocycles, The image of 0n-l is denoted by B;(C,A), 
its elements are n-coboundaries. Since B;(C,A) is a 
subgroup of the Abelian group !~ (C, A) ~ecaus~ of 
0non-l == 0, the factor group Z", (G,A)/B", (C,A) IS 

again an Abelian group denoted by H~(G,A). Its ele­
ments are equivalence classes of n-cocycles: cohomo­
logy classes. To give an example: for n :::: 2 the 2-
cochains are functions u(O!l' 0!2)' u is a 2-cocycle if 
uO: l (a 2 , 0!3)u(a l , 0!20!3) == u(0!Ia 2, 0!3)u(a 1 , 0!2)' it is a 
2-coboundary if there is a l-cochain c such that 
u(O!l' Ql2) :::: uO:1 (Ql2)u(O!l)u(Ql l 0!2)-I. For n == 1: a 1-
cochain u is a l-cocycle if u(O!)u a (f3) :::: u(O!{3). This is 
called a crossed homomorphism. If the action of C is 
trivial, it is an ordinary homomorphism u: G -) A. 

A series of groups {Ai} i E Z connected by homomor­
phisms CPi: Ai -) Ai +1 is an exact sequence if 
Ker",. :::: 1m",. . An example is the short exact 

z. t -1 
sequence 

1 CPo A CPl CP2 A CP3 1 (A4) 
----?- I --?> A2 ----?- 3 ~ . 

Exactness means 1m", = A3 (i.e., CP2 is an epimor­
phism), Ker", == 1 (i.e~, CPI is a monomorphism) and 

1 

Ker "'2 == CPl (AI)' The latter means that CPl (AI) is an 
invariant subgroup of A2 such that the factor group 
A 2 /CPl(A l ) == A 3. Then A2 is called an extension of 
Al by A 3. A section r for an epimorphism a: A -) B 
is a mapping r : B -) A such that ar is the identity on 
B. We choose always a mapping which maps the unit 
of B on the unit of A. A section r for CP2 in (A4) de­
termines an automorphism of Al by CPl(aa):::: 
r(QI)CPl(a)r(O!)-l (V(, E Al )· Moreover,r determines 
a mapping m: A3 x A3 -) Al by rea )r({3) == m(a, (3)r(a(3) 
(QI, f3 E A 3). If Al is an Abelian group, it becomes a 
ZA3 module. The 2-cochain m is a 2-cocycle, as fol­
lows from the associativity of the product, and is 
called a factor system. For any 2-cocycle there is 
an extension and vice versa. For any 2-cocycle m 
there is an extension A? of Al by A3 with product 
rule (a, QI) (b, (3) :::: (a . cP tQl)b . m (O!, (3), QI(3). Two exten­
sions A2 and A2 of Al by A3 are called equivalent if 
and only if there is an isomorphism If; : A2 - A2 such 
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that both the restriction to Al and the induced auto­
morphism of A3 are the identity automorphism. 
Equivalent extensions determine factor systems dif.:. 
fering by a 2- coboundary and vice versa. The classes 
of nonequivalent extensions are in one-to-one corres­
pondence with the elements of H~(A3,AI)' They form 
a group for that reason. 

A commutative diagram is a set of groups connected 
by homomorphisms such that the composition of 
several such homomorphisms between two groups 
determines the same homomorphism between the 
groups. In particular for a diagram 

A~B 

all T 

e~D 

commutativity means that Tp == va. 

APPENDIXB 

In Sec. 1 we restricted ourselves to (anti)unitary 
operators on X. A ray of operators consists of (anti) 
unitary operators differing by a complex number of 
modulus one. However, the rays of X consist of vec­
tors differing by an arbitrary complex number. If we 
had defined operator rays in an analogous way we 

1 M. Hamermesh. Group Theory (Addison-Wesley, Reading, Mass., 
1962). 

2 A. Janner and T. Janssen, Physica 53, 1 (1971). 
3 1. Schur, J. Reine und Angewandte Math. 127, 20 (1904); 132, 85 

(1907). 
4 V. Bargmann, Ann. Math. 59, 1 (1954). 
5 E. Wigner, Group Theory (Academic, New York, 1959). 
6 K. R. Parthasarathy, Commun. Math. Phys.15, 305 (1969). 

M. V. Murthy. J. Math. Phys. 7,853 (1966). 
M. Hall, Group Theory (MacMillan, New York, 1957). 

would have found an exact sequence: 

1 --) ex --) P(X) --) <l(X) --) 1, 

where ex is the multiplicative group of nonzero com­
plex numbers and 

P (X) == {AA I A E <l(X), A E ex}. 

Following the same lines the factor systems are then 
elements of Z~(G, eX) when ac == c(a E H), ac == c* 
(a E G-H) for any c E e x and classes of associated 
factor systems are elements of IffI(G, eX). Now we 
have 

H~(G) ~ H~(G, eX). 

For the proof consider the exact sequence 
1 --) U(l) --) ex --) RX --) 1, where RX is the multiplica­
tive group of positive real numbers. From this fol­
lows the exact sequence 

... --) HJ}(G,RX) --) H'J/1(G) 

--) H;;+I(G, eX) --) Hj}+I(G,RX) --) . ". 

As G is finite and RX torsion-free and divisible 
Hj}(G, RX) -= 1. From this follows the statement. 
This means that the restriction to rays of (anti)uni­
tary operators is not essential. 

9 S. McLane, Homology (Springer, Berlin, 1963). 
10 T. Janssen, A.Janner, and E.Ascher, Physica 42,41 (1969). 
11 W. Doring, Z. Naturf.14a, 343 (1959). 
12 A. C. Hurley, Phil. Trans. Roy. Soc. 260,1 (1966). 
13 S. Eilenberg and S. McLane, Ann. Math.48, 51 (1947). 
14 C. J. Bradley and B. L. Davies, Rev. Mod. Phys.40, 359 (1968). 
15 A. H. Clifford, Ann. Math. 38, 533 (1938). 
16 G. Koster, Solid State Physics (Academic, New York, 1957), 
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It is pointed out that the problem of realizing Lie algebras through polynomials in quantum canonical operators 
is not equivalent to its classical counterpart because the polynomial Lie algebras taken with respect to the 
classical and quantum Lie brackets are not isomorphic. Yet there are still many results which are common to 
both. To show this, the properties of commuting polynomials in quantum canonical operators are analyzed. 
This makes possible an extension from the classical to the quantum domain of a number of theorems on realiza­
tions of semisimple Lie algebras. At the same time it is stressed that differences can arise in the classical and 
quantum solUtions, and some of these are described. 

1. INTRODUCTION 

The success of the group theoretical classification of 
the elementary particles has stimulated a reinvestiga­
tion of the dynamical symmetries of mechanical sys­
tems,l,2 This presents the following problem. Given 
an arbitrary Lie algebra.e, determine up to canonical 
equivalence, all possible expressions for the genera­
tors of.e as polynomials in a given number n of pairs 
of canonical operators. This problem can be con­
sidered in the context of either the Poisson bracket 
Lie algebra of classical mechanics2 - 4 or the com­
mutator bracket Lie algebra of quantum mechanics. 5,6 

Now although a distinction is not always made be­
tween these two approaches, they may indeed admit 

quite different solutions. This arises because on the 
polynomials these Lie algebras are not isomorphic,7 
This fact can be ignored in the simplest cases which 
only involve subalgebras of the polynomials that do 
admit an isomorphism. S Yet it must be taken into 
consideration in general for it can lead to important 
differences in the dynamical symmetries of the two 
mechanical systems. 

The solution to the above problem in the classical 
framework is greatly simplifed4 through the use of 
certain existence theorems 9 - 11 in the theory of dif­
ferential equations. It is our aim to develop a cor­
responding formalism which applies in the quantum 
domain. This is achieved through the study of com-
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of nonequivalent extensions are in one-to-one corres­
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a group for that reason. 
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groups. In particular for a diagram 
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have 
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1. INTRODUCTION 

The success of the group theoretical classification of 
the elementary particles has stimulated a reinvestiga­
tion of the dynamical symmetries of mechanical sys­
tems,l,2 This presents the following problem. Given 
an arbitrary Lie algebra.e, determine up to canonical 
equivalence, all possible expressions for the genera­
tors of.e as polynomials in a given number n of pairs 
of canonical operators. This problem can be con­
sidered in the context of either the Poisson bracket 
Lie algebra of classical mechanics2 - 4 or the com­
mutator bracket Lie algebra of quantum mechanics. 5,6 

Now although a distinction is not always made be­
tween these two approaches, they may indeed admit 

quite different solutions. This arises because on the 
polynomials these Lie algebras are not isomorphic,7 
This fact can be ignored in the simplest cases which 
only involve subalgebras of the polynomials that do 
admit an isomorphism. S Yet it must be taken into 
consideration in general for it can lead to important 
differences in the dynamical symmetries of the two 
mechanical systems. 

The solution to the above problem in the classical 
framework is greatly simplifed4 through the use of 
certain existence theorems 9 - 11 in the theory of dif­
ferential equations. It is our aim to develop a cor­
responding formalism which applies in the quantum 
domain. This is achieved through the study of com-
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muting polynomials in the canonical operators. It 
enables us to extend to quantum mechanics some of 
the results previously obtained in classical mechanics 
and to point out some of the important differences 
that can arise. Though there is some overlap here 
with results obtained using the quotient division 
ring,5 the present analysis is quite distinct from this 
and generally applies to a rather different domain. In­
deed our approach is much closer to that given4 in the 
classical problem, and for this reason we start with 
a discussion of the Poisson bracket. 

2. COMMUTING POLYNOMIALS AND THE POISSON 
BRACKET 

Let P denote the set of all polynomials over the com­
plex field C in the real variables q, p. This forms a 
Lie algebra under the Poisson bracket defined by 

{ } 
aj ag aj ag 

j,g = aq ap - ap aq' (2.1) 

for allj,g E P. 

Suppose we are given a pair of elements a, b E P 
having vanishing Poisson bracket. Then inspection of 
(2.1) shows that 10 there exists a differentiable func­
tion F satisfying 

F(a, b) = o. (2.2) 

For an application of (2.2) in the realizations of Lie 
algebras we note the following proposition. 

PvofJOsition 2.1: Given a, b, h E P satisfying 

{a,b} = 0, (2.3a) 

{a,h} = sa, 

{b, h} = lb, 

(2.3b) 

(2.3c) 

where s, t are positive integers, then to within an 
arbitrary complex constant 

(2.4) 

Proof: Equation (2.3a) implies (2.2) which may be 
substituted into (2.3b), (2.3c) to yield 

aF aF 
sa all + tb ab = O. (2.5) 

Integration of (2.5) gives (2.4) as required. 

To see the significance of this result, we note that 
(2.4) implies the existence of an element e E P satis­
fying 

aU = c s , (2.6) 

where u is the highest common divisor of sand l. 

From (2.6) and (2.3) we obtain 

{e,k} = ue (2.7) 

and conversely (2.6) and (2.7) imply (2.3). Hence the 
original problem of obtaining realizations of (2.3) in 
P has been simplified to that of obtaining realizations 
of (2.7) in P. Moreover, identifying a, b, e as eigen­
vectors belonging to the positive roots of the adjoint 
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representation, we see that this analysis has a 
general context in the theory of semisimple Lie alge­
bras. Indeed it is not hard to extend proposition (2.1) 
to verify the well-known result that a semisimple Lie 
algebra of rank ;:, 2 cannot be realized in P. 4 This 
argument may be further extended to the case of n 
degrees of freedom and may also be strengthened to 
apply to the space of infinitely differentiable functions. 

We should clearly like to know to what extent the 
above arguments apply in the quantum framework. 
For this purpose we develop an analog to (2.2) for 
this case. This applies to the polynomials; but is not 
valid on formal power series. We use it to show that 
proposition (2.1) still holds for quantum canonical 
operators, though by contrast we find that the fac­
torization of (2.4) to obtain e fails. We then extend 
these results to n degrees of freedom and apply them 
to the study of semisimple Lie algebras. For mathe­
matical convenience we omit the imaginary number i 
from the canonical commutation relations and set 
Planck's constant equal to one. This does not affect 
the present analysis, though the necessary adjust­
ments must be made if one wishes to speak of q and 
p as self-adjoint operators. 

3. COMMUTING POLYNOMIALS AND THE COM­
MUTATOR BRACKET 

Let <p denote the set of all polynomials over C in the 
elements q, p and! which satisfy -

qp - pq = !. (3. 1) 

Then <p becomes a Lie algebra with respect to the 
commutator Lie bracket defined by 

[f,g] =jg -gj, (3.2) 

for all j, R" E <P. We shall use <p n to denote the corres­
ponding algebra generated by the elements satisfying 

(3.3) 

i, j = 1,2, .. " n, where 6ij is the Kronecker delta. 

The general commutator in <p may be computed 
through the formula 

(m.n) 
[qm ,pn I = B (:c)(Z)(- l)k-lk! qm-kpn-k, (3.4) 

k=l 

in which III and n are arbitrary positive integers and 
(m, n) denotes the smaller of 111 and n. We remark 
that the corresponding expression in P is obtained 
from (3.4) by omitting the terms in k > 1. It is these 
higher terms which prevent <p and P being isomorphic 
and cause the differences arising in the symmetries 
of classical and quantum mechanics. 

Given a E <p n , we shall say that a is nontrivial if it is 
not equal to a constant multiple of the identity 1. 
Given nontrivial elements a l , a 2 , • •• ,am E <P, we de­
note by ffi (all a 2, • • " a m) the set of all polynomials 
over C in at> a2 , •• " am' ! ordered so that a i appears 
to theleft of a j for all i < j. We shall say that 
x E ffi(···) is nontrivial if as a polynomial in the a i it 
is not equal to a constant multiple of the identity. 

For the case of one degree of freedom the main re­
sult of this section (which we have previously stated 
without proofS) may now be given. This is 
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Theorem 3.1: Given a, b nontrivial commuting 
elements of (V, then there exists a nontrivial element 
of <R(a, b) which evaluated in (V is identically zero. 

Proof: We start by demonstrating some general 
properties of (P. These are contained in the following 
lemmas. 

Lemma 3.1: Given a, b E (P with x(a) and y(b) non­
trivial elements of <R(a) and <R(b),respectively, then 
[x(a),y(b)] = 0 implies [a, b) = O. 

Proof: It is sufficient to show that [x(a), b] = 0 
implies [a, b] = O. Since CR is over the complex field, 
we may factor x in the form 

k 

x = n (a + ad), 
i~l ,-

with a i E f. From this the identity 

[x(a), b] = ~(5:(a + ai!))[a, b{1(a + ai!)) (3.5) 

is readily checked. Let us suppose that a is a poly­
nomial of degree r in P having coefficient in pr the 
polynomialf(q) in q. If [a, b] "'" 0, we may likewise sup­
pose it to be a polynomial of degree s in p with g(q) 
the coefficient of ps. Then from (3.1) and (3.5) we 
have 

·(adr(k-l)+sq)[x(a), b] = (r!)k-ls!Ji-lgfk-:i 

= (r!)k-ls!Jk-lg. 

Since f and g are both polynomials, [x(a), b] = 0 im­
plies that either for g vanish. In either case we have 
a contradiction; hence [a, b] = 0 and the lemma is 
proved. 

Lemma 3.2: Given a, b non-trivial commuting ele­
ments of (P. Let a be of degree r in q with x(P) the co­
efficient of qr and b of degree s in q with y(P) the co­
efficient of qS. Then there exists a nonzero complex 
constant a such that 

xS(P) = ayr(p). (3.6) 

Proof: Setting to zero the coefficient of qr+s-l in 
[a; b], we obtain, through (3.1), the differential equation 

sy(p)dx(P) _ rx(p)dY(P) 
dp - dp' (3.7) 

Integration of (3.7) gives (3.6) as required. 

Returning to the theorem we now show that there 
exists a nontrivial element x E <R(a, b) which is in­
dependent of q. To this end, suppose that a is of de­
gree r in q and b is of degree s in q. If either r or s 
is zero, we need go no further. Otherwise, raise a to 
the power sand b to the power r. This gives two new 
elements a', b' of the same degree t = rs. We show 
that x E CR(a', b'). Since <R(a', b') C !R(a, b), we may 
drop the prime without loss of generality. 

From Lemma 3. 2 we see that any two commuting ele­
ments of the same degree in q have linearly dependent 
leading terms. On the other hand, the monomials in 
CR(a, b) of degree kt or less in q span a space of dimen­
sion (k + l)(k + 2)/2. ChOOSing k ~ 2t, we have 
(k + l)(k + 2)/2 > kt, and so the required element x 
can be obtained as a suitable linear combination of 

these monomials. Should x not be independent of p, 
then it must be a nontrivial element of <R(P). As a 
commutes with x, then through Lemma 3.1 it must 
also commute with p and so must a nontrivial element 
of <R(P). As a and b commute, the same applies to b 
and the theorem follows through a repetition of the 
above argument to the degree of p. 

We remark that this result applies to formal power 
series when one of the canonical operators appears 
at least linearly and at most to some finite power in 
both a and b. However, it fails on general power 
series. For example, from the Weyl form of the 
canonical commutation relations, it is easily shown 
that 

[exp(iaq),exp(21Tp/a)] = 0, 

for all real a. Obviously there can be no polynomial 
(or function) of these operators which vanishes. 
Moreover, they exist in a well-defined sense if q and 
ip are self-adjoint. This result which does not hold 
for the Poisson bracket has been used to discuss 
quantum effects with no classical analog. 12 It also 
provides a useful set of commuting observables suit­
able for discussing periodic systems in quantum 
physics. 13 

As an application of Theorem 3. 1 we extend Proposi­
tion 2. 1 to (P. That is, we show: 

Theorem 3.2: Given a, b,h E (V satisfying 

[a, b] = 0, 

[a, h] = sa, 

[b, h] = lb, 

(3.8a) 

(3.8b) 

(3.8c) 

with sand t positive integers, then to within an arbi­
trary complex constant 

(3.9) 

Proof: As a and b are both clearly nontrivial, 
Theorem 3.1 applies and we obtain an expression of 
the form 

m n 

~ ~ OklaklJl = 0, (3.10) 
k~ l~O 

where the 0kl E f and not all these constants vanish. 
Commuting h through (3.10) r times and using (3. 8b), 
(3. 8c), we obtain 

m n 

~ E (sk + fl)ra kl aklJl = O. 
k~O l~ 0 

This holds for any nonnegative integer r. Hence the 
double summation in (3. 10) must reduce for each non­
negative tnteger value u of sk + tl to u Single summa­
tions which individually vanish. As not all the 0kl are 
zero, there is at least one value of u for which the co­
efficients in the summation do not all vanish. By 
formal multiplication of anyone such expression by a 
suitable multiple of a-1, we obtain a nontrivial poly­
nomial in c == a-tb s. Factorization of this polynomial 
over the complex field into terms linear in c gives 
c = y 1 for some y E C. Multiplication through by at 
gives (3.9) as required and the theorem is proved. 

In (Vn Theorem 3.1 admits the following generalization. 
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Theorem 3.3: Given av a2, •• " an+1 nontrivial 
commuting elements of (pn, there exists a nontrivial 
element Z E <R(av a2, ••• , an +1 ) which evaluated in 
(pn, is identically zero. 

Proof: As in Theorem 3.1, we compare, for given 
degree, the number of distinct monomials in <R(a1' a2' 
••• , an+1 ) with the number of commuting elements 
that are linearly independent in their leading term. 
The key step in this argument is contained in the fol­
lowing lemma. 

Lemma 3.3: Let SI.m.n be the linear span of a col­
lection of homogeneous polynomials of degree m in l 
independent variables x v x 2' ••• ,XI such that for each 
subset f 1 .J2 , '" .In+1 E S I.m.n and at each pOint!o of 
the ~-space, the differentials df/00)' i == 1,2, "', 
(n + 1), are linearly dependent. Then dim S I.m.n ~ 
(m~-l) for all positive integer l, m, n. 

Proof' The proof is by simultaneous induction on 
land n. Since the number of homogeneous poly­
nomials of degree m in l variables is (m;;'I-1), it cer­
tainly holds for all l ~ n. In this case the condition 
on the differentials is trivial. However, for l > n, we 
have from 

I (af;) dfi(:s.o)== ~ ax dxj , 
J 4 J ~="O 

and the independence of the Xj , that any determinant 
of order (n + 1) of the matrix (af/Oxj) vanishes at 
each point 3"0 of the 3"-space and hence everywhere. 

For n = 1, this condition becomes 

2- ag _ af ~ - 0 
aXi aXj oXj aX

i 
- , 

(3.11) 

for allf,g E Sz.m.1 and all i,j == 1,2, ... , l. Multipli­
cation of (3.11) by,xi and summation over i gives 
after a little rearrangement 

( t Xi Ologf) 0 logg _ (t Xi 0 10gK) ologf == O. 
;=1 OXi aX) ,=1 oX) aX) 

Sincef,g are homogeneous of degree m, the expres­
sions in round brackets are both equal to III. Integra­
tion of the resulting equation over each Xj shows f and 
g to be linearly dependent and hence that dim SI.m.1":; 1. 

Let us assume that the lemma holds for all l, III, n 
satisfying l ~ lo, III ~ 111 0 , n ~ no and all I, II!, n satis­
fying l ,,:; lo + 1, m ,,:; rn 0' n ~ no - 1. We argue by 
contradiction to show that it holds for l = lo + 1, 
m == rn 0' n = no' Let X denote the (lo + 1)th variable. 

We show that dim 51 +1 ~ n > (mo;;0-1) implies the o . ,,10' 0 0 

existence of a nonzero element g E 51 +1 m n which 
o ' o· 0 

is divisible by x. Suppose there are no such ele-
ments; then each J,. E Sl +1 m n may be written in the 

o . o· 0 form 
F mOF rn o-1 F 
Ji == X Ji 0 + X J,,' 1 + ... + J,. m , 

• • • 0 

where the f i .r are homogeneous polynomials of de­
gree r in 10 variables. Since (of/aX)~oo == (ofi.m/OXj) 

for all x '" x, the f "'0 may be regarded as elements 
of 5 I J • Then through the induction hypothesiS and 

o' mo·no 
the assumed dimensionality of 5 z +1 "" n we have o • o· 0 

dimS 1 > dimSl • Hence the required 
lo+ ,mo,n o o·mo·no 
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element g can be obtained as a suitable linear com­
bination of the f i • 

We now use the existence of element/! to show that 
the number of linearly independent elements con-
tained in 5z + 1 and divisible by x is strictly o .ma .no 

greater than (:~~~-2). Since this is the maximum pos­
sible dimension of 510 ,rn o-l.no ' repetition of the above 
argument provides an element of SI +1 m n divisible 

o . o· 0 

by x 2 • We can then show that these elements form a 
space of dimension strictly greater than (:~~~0-3) and, 

continuing in this fashion, we eventually find that the 
dimension of the space of elements divisible by xm is 
strictly greater than one. This contradiction will 
prove the lemma. 

Consider the (n + 1) x (n + 1) matrix with entries 
(afi lax]) withfi = g, 

r s 1 

Xil == x, f" E Sl +1 m n , r == 2,3, .. " (n + 1), 
r o· o· 0 

1 ~ js ~ 10 , s == 2,3, .. " (n + 1). 

Through the hypothesis of the lemma, det(of; loxj ) = 
O. By identifying the smallest coefficient of ~ in this 
expression and using the fact that g is divisible by x 
and is a nonzero polynomial, we obtain 

zy.mo 

\

6J:. ) det -,,-- == 0, 
oX]s 

(3.12) 

where the prime denotes that the first column and 
first row of the original determinant has been delet­
ed. Through Eq. (3.12), we may regardfir.mo as an 
element of 51 +1 m n -1' By the induction hypothesis 

o ' 0' 0 

this space is of maximum dimension (mo:::00-2). Hence 

the space of all elements of Szo+l. mo '''0 divisible by x 
is strictly greater than 

(
rno + no - 1) _ (»10 + no - 2) == (»10 + no - 2) 

1110 lno »10 - 1 ' 

as we wished to show. The lemma is proved. 

As in Theorem 3.1, we may assume without loss of 
generality that the ai are all of the degree t. Then for 
given positive integer k the monomials in <R(a 1 , a2 , 

••• , an+1 ), which as polynomials in (pn are of degree 
kt, span a space of dimension (";.n). Now we may com­
pute the leading term of the commutator of any two 
elements in (pn by re-expressing the operatorsq;,Pj 
as real variables followed by use of the Poisson 
bracket. We stress here that the leading term is in­
dependent of the ordering in qi'Pj' It is then an easy 
consequence of a theorem 11 on commutative function 
groups that the hypothesis of Lemma 3.3 applies to 
these monomials and hence (setting l == 2n, m == kt) 
that their leading terms form a space of dimension 
( ktm-1 ). Thus, to obtain the required element z satis­
fying the conclusions of the theorem, it suffices to 
find a positive integer ko such that 

t (k + n) == (ko + n + 1\ > 
k=O k ko J 

~ (m+ n- 1) 
m=O m 
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This holds for all ko ;, (n + I)tn, and hence the 
theorem is proved. 

Should the ai not all commute, then Theorem 3.3 fails. 
However, we note in passing the following result 
which holds for general elements of CPn. 

Theorem 3.4: Given 2n + 1 nontrivial elements 
a1> a 2 , ••• , a 2n+l E (pn, there exists a nontrivial ele­
ment x E 6\(a1 , az, ••• , a Z n+1) which evaluated in (pn 

is identically zero. 

Proof: The proof is by monomial counting. Indeed 
it is not difficult to show that there exists a positive 
integer k such that the number of distinct monomials 
in 6\(a 1 , az, ••• , aZn+l) exceeds the total number of 
ordered monomials in ql' Q2' "', Qn' P1 ,P2 , ••• 'Pn 
appearing in them. It should be noted that we use 
(3.3) to effect this letter ordering so that the above 
result depends on the particular form of these com­
mutation relations and cannot generally be assumed to 
hold for arbitrary noncommuting polynomials. 

Finally we remark that in analogy with the theory of 
function groups,9 an argument parallel to that used 
in Theorem 3.3 establishes the following. 

Theorem 3.5: Let m be a positive integer with 
m ~ 2n. Let a p i = 1,2, .•• , m, and bi' j = 1,2, "', 
2n - m + 1. be nontrivial elements of tpn with [ai' bi] = 
0, for all i, j. Then either(R(a l , a2 , • '" arr) or 6\(b l' b 2' 

•• " b2n- m +1 ) contain a nontrivial element which evaluat­
ed in (pn is identically zero. 

4. REALIZATIONS OF SEMISIMPLE LIE ALGE­
BRAS 

Applying Theorem 3.3, we can now extend some of 
the results on realizations of semisimple Lie alge­
bras taken under the Poisson bracket to the quantum 
domain. First we note a basic property of these alge­
bras which is nearly always used in this connection. 
This is14 

Theorem 4.1: A semisimple Lie algebras £ of 
rank r admits a subalgebra £+ of dimension 2r with 
basis hl' h 2 , ••• , hr' e l , e 2 , ••• , er satisfying 

rei' ej } == 0, 

[hi' ejl == a i) ej (no summation). 

(4. la) 

(4.lb) 

(4.1c) 

The aii are rational constants and form a matrix a 
for WhlCh 

deta?!- O. (4.2) 

From this result we can now prove: 

Theorem 4.2: Given £ a semisimple Lie algebra 
of rank r. Then, if r > n, it has no realizations in (pn. 

Proof: The proof proceeds by application of 
Theorem 3.3 to the commutation relations (4.1). 
This will give deta == 0, which by (4.2) is a contradic­
tion. To this end, we first observe that on account of 
(4. Ic) and (4.2) the ei must be nontrivial elements of 
(pn. Thus Theorem 3.3 applies, and we may assert 

for r > n that there exists a nontrivial element 
e E m(el> ez, •• " e) satisfying 

m 1 ~m2,mr 

" " (3 kl k2 kr 0 L.J L.J k k •.. k el ez .. ·e r == , 
k

1
.k

2 
..... kr=O 1 2 r 

e== (4.3) 

with 13 k k .. , k E c... Not all these constants vanish and, 
1 2 r 

moreover) since the ei are polynomials, at least two 
must be nonzero. We may also assume without loss 
of generality that none of the partial sums in (4.3) 
individually vanish. 

For fixed i we commute hi' using (4. lc), 1 times 
through (4.3). This gives 

6f3kk k(tk.a .. )le:1e;2 ... ekr==0, (4.4) 
1 2'" r j~ 1 J 'J r 

which holds for any nonnegative integer t. Recalling 
our assumption on partial sums, it follows that the 

summand B;~1kpij must be independent of those kj 
which lead to nonzero {3k ... k • As at least two of 

1 r 
these constants are nonzero, we may find integers 
k;, j = 1, 2 .. . r, which are not all zero and such that 

r 

6 k'a. == O. 
j ~1 J 'J 

This must hold for all i; hence deta == 0 and the 
theorem is proved. 

For r = n we cannot generally assume that £ will 
have a realization in (pn. On the other hand, given 
such a realization, it is an easy extension of the above 
argument to show the following. 

Theorem 4.3: Given a realization in (pn of a semi­
Simple Lie algebra .c of rank n, then the invariants of 
the enveloping algebra U£ are all constant multiples 
of the identity. 

Proof: Select an arbitrary invariant element 
I E U£. If I is nontrivial, it follows from Theorem 
3.3, (4.1b), and the invariance of I that there exists 
a nontrivial e E m(e1 , ez,· .. , en'!) which is zero 
evaluated in (pn. Commuting through the hi' as in the 
previous theorem, using (4. 1c) and the invariance of 
I, we can show that deta == O. This contradicts (4.2) 
and hence 1 must be a multiple of the identity, and so 
the theorem is proved. 

Since we have used only the fact that I E (pn, this 
result also applies to any invariant element of .c in 
(pn. We can show for a compact semisimple Lie 
group that it leads to certain realizations being ex­
cluded. In this we shall assume the q;, i == 1,2, ..• , n, 
to be self-adjoint and the Pi' i = 1,2, ••• , n, to be skew­
adjoint: a choice consistent with (3.3). Then 

Theorem 4.4: Let G be a compact semisimple Lie 
group of rank n with Lie algebra £. Then £ has no 
realizations in (pn satisfying either one of the follow­
ing conditions: 
(1) The elements of.c are either all self-adjoint or 

all skew-adjoint. 

(2) The elements of £ are all real polynomials. 

Proof: 

(1) Since G is compact and semisimple, we may pick 
a basis xi,xz, ... ,xn E £ such that 
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is an invariant element of .c in u.c. Assume for the 
moment that n = 3 and let 1tl be the degree of the 
highest term appearing in the xi' Certainly m ~ 1, 
for otherwise .c would be commutative. To highest 
order, we may write each xi in the form 

m 

Xi ::: L) Ctikq m-kpk, 
k=O 

where the Cl. ik are complex numbers. When the Xi are 
self-adjoint, we have through adjointness properties 
of the canonical operators and (3.3) that 

Ctjk ::: (- l)kaik 

for all i, k where the bar denotes complex conjuga­
tion. 

Since, by Theorem 4.3, 11 must be a multiple of the 
identity, we have, on equating to zero the terms of 
degree 2m in I V that 

3 m m 

E L) B Cl.ik aik' (- l)k' xk+ k ' ::: 0, 
iel k=O k'=O 

which holds as an identity in the arbitrary real vari­
able x. By induction on k we may show from this 
that CI.;k = 0 for all i, k, which is a contradiction. 
Similar arguments apply when the Xi are skew­
adjoint and for general values of n. 

(2) By Theorem 4.3, 11 must be a multiple of the 
identity. This clearly cannot hold for real polyno­
mials in (pn and so the theorem is proved. 

It should be apparent from the above proof that (1) 
and (2) need not be equivalent. For example, by 
choosing q and iP to be self-adjoint, then 

x = :h(q2 + p2), y = ti(q2 - p2),Z = t(qp + pq) 

are all skew-adjoint. They close on the noncompact 
Lie algebra 80(2, 1) rather than the compact form 
80(3, R). This is still true if we omit the imaginary 
factor i to make these polynomials real. To obtain 
the compact form, we must violate both conditions (1) 
and (2). 

The failure to find realizations satisfying (1) above 
can be understood in terms of the representation 
theory. Thus (1) by suitable exponentiation leads to a 
unitary representation ~ of G which by Theorem 4. 3 
and the remark following it we should expect to be 
irreducible. (Actually ~ is a factor representation 
which could conceivably be of infinite multiplicity.)15 
In the case that ~ is irreducible, then, as G is com­
pact, it must also be finite dimensional, a result which 
conflicts with the infinite dimensionality of repre­
sentations of the canonical commutation relations. 

We close this section with one more result in the 
same spirit. It is a comment on canonical trans­
formations in (pn. 

Theorem 4.5: Given a realization in (pn of the nil­
potent Lie algebra.c with elements L ;Z"Pj , i,j::: 
1,2 .. " n, satisfying 

(4.5) 

with 1 in the center of .c. Then, if 1 '" 0, it is a con-
stant -multiple of the identity. -
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Proof: If 1 '" 0, then from (4. 5) the q. are non-
~ - , 

trivial. If 1 is nontrivial, then by Theorem 3.3 there 
exists a nontrivial element e E 6\( q 1, q 2'· ••• , qn' ! ) 
which vanishes in (pn. By expanding e as in (4.3) and 
commuting the Pj through this expression using (4.5), 
it is easy to show that e is trivial in 6\( ••• ), This 
contradiction proves the theorem. 

5. FACTORIZATION OF COMMUTING POLYNO­
MIALS 

Though pn and (pn are not isomorphic, there are, as 
we have seen, many results which hold for both. This 
cannot always be assumed to be true, and it is our 
present purpose to point out one such difference. 
This concerns the factorization of commuting ele­
ments of (P. Its importance derives from Proposition 
2.1. Recall that here the factorization of (2.4) yield­
ed the element c which effected the reduction of (2.3) 
to (2.7). We show by counterexample that the corres­
ponding factorization cannot generally be carried out 
in (P. However, before we do this, we consider a pos­
sible strengthening of Theorem 3. 1 which would im­
ply this factorization in order to reveal the precise 
manner in which this failure occurs. 

Suppose we could show that, given any two commuting 
elements a, b E (p, there exists a polynomial d E (p 

such that a, b E CR(d). Than this would imply the re­
quired factorization. To show it is false, we attempt 
the construction and observe how this fails. To this 
end we first prove: 

Theorem 5.1: Let a, b be nontrivial commuting 
elements of (p with a of degree m and b of degree n. 
Let r be the highest common factor of IJI and n. Set 
u == m/r, v == n/r. Then there exists an element 
e E (p such that to highest order 

(5.1) 

Remark: It is clear that if d were to exist, then e 
would be its leading term. 

Proof: The proof is by construction. Let a', b' be 
the leading terms of a, b, respectively. We may write 
them in the form 

m n 
a'::: :B Cl.kqip'"""k, b ' ::: E fl1qljJn-l, 

k=O z=o 

with O'k' fll E f.. We now compute the leading term in 
the commutant of a'. b'. 

Since a, b commute, this must vanish and so we obtain 
m n 
E ~ CtJ31 (km - In)qk+l-lpm>n-Z-k-l ::: 0, 
k=OZ=O 

which holds as an identity in the canonical operators 
q and p. This may be conveniently replaced by the 
following identity in the arbitrary real variable X, 

namely 
m n 

~ 2:: Ctkf3Z (km - In)xk+Z-1 ::: O. 
k=O 1=0 

Define the polynomials 
m n 

Yl == ~ O'k xk , Y2 == ~ flzxl , 
k~O k=O 

(5.2) 

and substitute Yl' Y2 and their derivatives Yl"Y2' 
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into (5.2). The resulting differential equation gives 
on integration 

n m 
Yl = Y2' (5.3) 

to within an arbitrary multiplicative complex con­
stant. Since we have now eliminated the noncom­
mutativity from the problem, Eq. (5. 3) may be factor­
ed to yield a polynomial y 3 satisfying 

We may write y 3 in the form 
T 

Y3 = ~ 'Yk xk, 
k~O 

with 'Y k E: ~. It is clear that if we set 
T 

e = E 'Y kqkpr-k, 
k=O 

then this element has the required property and the 
theorem is proved. 

From the fact that we have used only the leading term 
in the expansion of the commutator (a, b ], the above 
theorem has the following immediate corollary: 

Corollary 5.1: Given a, b, C E: <P with [a, b J = c. 
Let m, n,p be the degrees of a, b, c, respectively, and 
define u, vas before. Then, if p < n1 + n - 2, there 
exists an element e E: <P satisfying (5.1) to highest 
order. 

This result proves useful in the study of realizations 
of Lie algebras in terms of high-order polynomials. 

Returning to the construction of the element d, we set 
u, v of Theorem 5.1 equal to 3,2, respectively, and 
write 

a = e3 + (3/4}{ej + je), b = e2 + j, (5.4) 

with j E: <P. With this choice, which is not of course 
the most general one, the higher-order terms in the 
commutator [a, b J cancel, and we obtain 
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[a, b] = [e,{(e, [e,j]] + 3j2}] = O. (5.5) 

Equation (5.5) will certainly hold if the term in curly 
brackets is made to vanish. This can be effected by 
setting 

e = q2p, j= - 2q2. 

Moreover, with this choice, an elementary, though 
tedious calculation, which we omit, shows that 

(5.6) 

This provides our counterexample. Indeed, noting that 
e and j are not themselves polynomials in a common 
element and that deg j < deg e, we see that the re­
quired element d cannot exist. By contrast the clas­
sical analog of the expression [a, b] does not contain 
the double commutator [e, [e,j]] appearing in (5. 5). 
Consequently, in this case, e andj commute and are 
themselves functionally dependent. A corresponding 
role is played by the double commutator in the veri­
fication of (5.6), which is not mirrored by the clas­
sical expressions for a and b. We may also anticipate 
a similar behavior present in realizations of semi­
Simple Lie algebras using high-order polynomials, 
though this is more difficult to exhibit. As such it 
would provide realizations with the propertythatthe 
generators have different Lie algebraic relations 
with respect to the Poisson bracket. The possibility 
of this circumstance is a pointer to nonclassical be­
havior and merits further investigation. 

Finally we remark that (5.6) factorizes trivially in 
the quotient division ring, a property which distin­
guishes it from <P. 
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Linear stochastic master equations for wave propagation in a continuous random medium are derived along 
the lines of the resolvent theory used in nonequilibrium statistical mechanics. Equations for the mean and 
fluctuating fields are subsequently obtained by operating directly on the stochastic master equations with 
statistical projection operators. The findings are compared with the results determined using the method of 
renormalization and the method of smoothing. 

1. INTRODUCTION 

The study of wave propagation in a randomly inhomo­
geneous medium leads, in general, to a family of 
linear partial differential equations 

L(w)u(w) = f(w). (1. 1) 

Here, L(w) is a stochastic operator depending on a 
parameter WE n, n being a probability measure space. 
In additionJ(w) is a random source distribution and 
u(w), the random field quantity, is an element of an 
infinitely dimensional vector space JC. u(w) and f(w) 
can be either scalar or vector quantities. 1 

The operator L is now split into two parts as follows: 

(1.2) 

Lo and LI are linear operators in JC corresponding, 
respectively, to "free" propagation and "interaction" 
propagation. 

The field function u is, in turn, decomposed abstractly 
into two mutually independent terms: 

u = Vu + Cu (1. 3) 

by means of the formal introduction of the two opera­
tors V and C.2 Vu is called the mean or coherent 
component and Cu is the fluctuating or incoherent 
component of the field flJnction u. 3 The uniqueness of 
the decomposition (1. 3) as well as the mutual inde­
pendence of the two components are ensured by pres­
cribing the properties 

V + C = I, V2 = V, C2 = C, VC = 0, CV = 0, 
(1.4) 

where I is the identity operator. By virtue of these 
relations, V and C are called projection operators. 

The interconnection between the decompositions (1. 2) 
and (1. 3) is contained in the commutation relations 4 : 

(1. 5) 

which constitute a mathematical statement of the fact 
that the fluctuating component in (1. 3) is due to the 
interaction part of the operator in (1. 2) alone, not to 
the free propagation part of it. Therefore, Lo must 
commute with V, and, thus, also with C = I-V. From 
(1. 5) and (1.4) follow the relationships 

CLoY = 0, VLoC = O. (1. 6) 

A specific realization of the projection operators V 
and C which will be used in the ensuing work is the 
following: 

(1.7) 
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The ensemble average of the random field function 
u(w) is given by 

8{u(w)} = J(lu(w)P(w)dw, (1.8) 

with P(w) denoting the probability density in the mea­
sure space n. 
The mean part of the field is identified with the en­
semble average, and the fluctuating part is defined as 

ou = u - 8{u}. (1. 9) 

From this definition it follows that 8{ou} = 0. 

Thus, any field U E JC can be written as a sum of the 
mean field 8{u} and a fluctuating field Ou. 5 Within 
the framework of the specific realization (1. 7), the 
commutation relations (1. 5) signify that Lo is a non­
random (deterministic) operator, and Ll is a generally 
noncentered random operator. 

2. SMALL PERTURBATION THEORY 

There exists a well-known solution of the equation 

(2.1) 

in the form of a power series in the operator L'(j1; it 
is obtained from the equation 

(2.2) 

with the aid of the binomial expansion theorem 6 : 

00 

u = 6 L(jl(Ll L(?)n f. 
n~O 

(2.3) 

This is the frequently used perturbation solution of 
(2.1). The expression for the coherent field 8{u} may 
be found by applying the projection operator V (statis­
tical average) on both sides of (2.3). Similarly, for 
the fluctuating field ou, one operates with the projec­
tion operator C. It is known, however, that the indivi­
dual terms of the perturbational series for 8{u} are 
secular, i.e., they increase without bound for large 
distances. To circumvent these restrictions one re­
sorts to judicious partial summations of the infinite 
perturbational series solution. Selective partial sum­
mations of the infinite perturbational series have been 
effected most systematically by the method of renoy­
malizalion introduced in the study of wave propagation 
in continuous random media by Tatarskii and Gertsen­
shtein,7 and the method of smoothing expounded by 
Frisch. 8 One should also consider the equivalent (but 
more specialized) techniques developed by Meecham,9 
Bourret,IO and Keller.11 

In the following we shall develop another such techni­
que along the lines of the resolvent theory used in 
nonequilibrium statistical mechanics (cf. Ref. 2) and 
compare the findings with those obtained using the 
aforementioned methods. 
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3. STOCHASTIC MASTER EQUATIONS 

Equation (2. 3) is rewritten by inserting between each 
factor L1 and L01 within the parenthesis the identity 
operator in the form 

(3.1) 

With (3.1) taken into consideration, the sum (2.3) is 
subsequently rearranged by cutting every product at 
the point where the projection operator V appears, 
and grouping together all possible products between 
successive V factors. Finally, one sums over all pos­
sible number of V factors. The result is established 
to be 

0() 

u::: z::; Lo1(JllVLQ1)n(1 + 'JT[CL(})j, 
n~O 

(3.2) 

with the operatorml defined as 
00 

'JT[::: z::; L 1(CLo1L1)P. (3.3) 
p=O 

This operator plays a Significant role in the develop­
ment of the theory. 

Before proceeding further, it will be assumed that j 
is a deterministic source. Then, making use of the 
commutation relation [Lo1, C)_ == 0 and the fact that 
CV == 0 [cf. Eq. (1. 4)], one finds that 'JT[CL(j1 j == O. 
Hence, (3.2) simplifies to 

00 

U::: z::; L(j1('.J1lVLO 1 )nj. 
n=O 

(3.4) 

This expreSSion may be rewritten as 

(3.5) 

The relations (3.4) and (3.5) will be referred to as 
the stochastic master equations. 12 The first is an 
integral expression while the second is an integro­
differential equation. 

One can obtain a relation for the mean field by operat­
ing on (3.5) with the projection operator V: 

&{u} == Lr/j + L(j1M&{u} . (3.6) 

By analogy to a similar equation in quantum electro­
dynamics, (3. 6) is called the Dyson-Schwinger equa­
tion with 

0() 

M == V'JT[ V == 6 VL 1 (Li)1CL1)P V 
p=l 

(3.7) 

the mas s operator. (For the sake of simplicity, we 
have imposed the restriction that L1 is a centered 
random operator. This condition is stated mathema­
tically as VL 1 V == 0.) Equation (3.6), with the mass 
operator given by (3.7), is identically the result 
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1 The parameter w will usually be suppressed for convenience. 
2 R. Balescu, Physica 38, 98 (1968);42,464 (1969). 
3 Vu and Cu in Balescu' s application to nonequilibrium statistical 

mechanics refer to the vaCl/um and rorrelalioll components of 
the field u, respectively; hence the notation for the operators V 
and C. 

4 [A,BL=AB-BA. 
5 In addition to the inherent mathematical convenience, the resolu­

tion of the field into a coherent and incoherent part is in accor­
dance with conventional measurement procedures. 

reached by either the method of renormalization or 
the method of smoothing. 

The first-order smoothing approximation 13 is deter­
mined by retaining only the first term in the series 
expanSion for the mass operator, and introducing it 
into the Dyson-Schwinger equation, viz., 

M ~ VL1Lij1CL1V, 

8{u} == Lo1j + L(j1VL1L(j1CL1V8{u}. 

(3. 8a) 

(3. Bb) 

It should be noted that the exact Dyson-Schwinger 
equation (3. 6) corresponds to the formal summation 

00 

&{u} = L; (Lo1VM)nLo1j. 
n=O 

(3.9) 

The same result can be found by applying the projec­
tion operator V on the integral expression (3.4). 
Also, (3. Bb) corresponds to the formal summation 

00 

8{u} == z::; (L("?VLILo1LlV)nLolj. 
n=O 

(3.10) 

which, in turn, can be obtained from (3.9) by retaining 
the first nonvanishing term in the mass operator. 

Finally, the fluctuating field is given in terms of the 
mean field, as seen by operating on (3. 5) with the pro­
jection operator C: 

(3. 11) 

This is exactly the result obtained from the method 
of renormalization or the method of smoothing. 

4. CONCLUDING REMARKS 

In the method of renormalization and the method of 
smoothing one derives first a closed system of equa­
tions for the mean field and the fluctuating field. 
This system is then solved by the method of succes­
sive substitutions. Essentially, one iterates the field 
equation in the space CX to obtain the fluctuating 
field in terms of the mean field, and hence an equation 
for the sole mean field. 

In contradistinction, in this exposition, one iterates 
the field equation in the entire space :fe[ cf. Eq. (3.2»), 
and the mean and fluctuating components of the field 
are obtained by projecting the result on VX[ cf. Eq. 
(3.9)] and CX [cf. Eq. (3. 11)], respectively. Finite­
order iterations are equivalent to the summation of 
infinite subseries, e.g., Eq. (3.10). 

In clOSing, it should be pointed out that lifting the res­
trictions that the forcing function f be deterministic 
and L1 a centered random operator introduces no 
essential difficulties. 

6 It has been assumed here that the norm of the operator L[jILl 
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12 This term is used here by virtue of the analogy of wave propaga­
tion in continuous random media and nonequilibrium statistical 
mechanics. As it has been pointed out by Frisch (cf. Ref. 8) this 
analogy arises principally as a consequence of the mathematical 
Similarity of the linear random wave equation (1. 1) and the 
linear Liouville equation. 
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Ref. 10) under the name of one -fie/OIl ap/ffoximatiol1. Tatarskii 
and Gertsenshtein (cf.Ref. 7) refer to it as the bifocal approxi­
mation. 

On Wave Propagation In Inhomogeneous Media 

R.M.Case 
The Rockefeller University,New York,New York 10021 

(Received 17 September 1971) 

Familiar relations between phase and group velocity for wave propagation in homogeneous media are genera­
lized to the inhomogeneous case. The constant velocity ·c" is merely replaced by an appropriate weighted 
average. The key tool lies in the stationary property of the frequency as a functional of the wavefunction. 

1. INTRODUCnON 

In many areas one encounters the phenomenon of 
"waveguide propagation". By this we will mean waves 
traveling in a medium such that the medium is homo­
geneous in the direction of propagation but inhomo­
geneous in the perpendicular direction. 

In Simple cases of homogeneous media it is well 
known that there are relations between the group 
velocity (Vg) and the phase velocity (vp )' Thus, for 
example, 

and 

(1) 

(2) 

where c is the velocity occurring in the wave equa­
tion. Here we will show that there are simple 
generalizations of Eqs. (1) and (2) which hold for 
"waveguide propagation." While there are many varia­
tions of the waveguide problem,l we will for purposes 
of clarity restrict attention to only one such-and, in­
deed, one of the simplest. 

2. FORMULATION 

Consider the following generalization of the simple 
wave equation 

1 a2 cl> (3) V2<l>_- - = 0, 
c2 at2 

where now c is independent of z but may be a general 
real function of the perpendicular coordinate rp' We 
look for solutions 

Here 'l1(rp) is to be such that Eq. (3) and prescribed 
boundary conditions are satisfied. 

Thus 

(4) 

(Vi - k2)lJI = - w 2 'l1. (5) 

We note these conditions are equivalent to the require­
ment that the expression 

J{ 1~'l112 + k 2 /lJI/ 2}d2Tp 
w2 = ~-=-------~ 

JllJIl2/c 2 (rp)d2rp 

1 See, for example, L. M. Brekhovskikh, Wanes in Layeved Mfdia 
(Academic, New York, 1960). 
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(6) 

is stationary with respect to variations of lJI. 

3. RESULTS AND PROOFS 

Let 

then with 

we have 

v P 2: J1ifIfj, 

Vg ~ Jl/I/c 2 

(7) 

(8) 

(9) 

(10) 

Proofs: Since the expression in Eq. (6) is station­
ary with respect to small variations in 'l1, we may find 
dw/dk by differentiating Eq. (6) only where k occurs 
explicitly. Thus 

2w dw = 2k Jlwl2d
2
rp = 2k/l/c2 (11) 

dk JI >Ji1 2 / c2 (rp)d2rp 

Therefore, dividing by 2k, we obtain Eq. (8). 

Further, since I VpW 12 is positive definite, we see that 

w2 > k2JI'l11 2d 2rp 

- Jlwl2d2rp/ c2(rp) ' 

from which Eq. (9) follows. Finally, combining Eqs. 
(8) and (9), we get Eq. (10). 

4. CONCLUSIONS 

It has been shown that the relations between phase and 
group velocities are generalizable in inhomogeneous 
situations. The proof is in some sense Simpler than 
the conventional one of using explicit expressions to 
verify the relations. The key property is the station­
ary property of w 2 as a functional of the wavefunction. 
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is stationary with respect to variations of lJI. 
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4. CONCLUSIONS 

It has been shown that the relations between phase and 
group velocities are generalizable in inhomogeneous 
situations. The proof is in some sense Simpler than 
the conventional one of using explicit expressions to 
verify the relations. The key property is the station­
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The differential equations and boundary conditions describing the behavior of a finitely deformable, polariz­
able, and magnetizable, heat conducting continuum in interaction with the electromagnetic field are derived by 
means of a systematic application of the laws of continuum physics to a well-defined macroscopic model. The 
model consists of an electronic charge and spin continuum coupled to a lattice continuum, which in itself con­
sists of two interpenetrating ionic continua, which can displace with respect to each other to produce ionic 
polarization. Since spin angular momentum and electronic and ionic linear momentum are taken into account, 
magnetic spin resonance and both ionic and electronic polarization resonances are included in the treatment. 
Magnetic interaction terms are obtained by regarding magnetization as a consequence of point circulating cur­
rent densities. When material resonances are suppressed, a simpler model is applicable and a not only 
smaller but somewhat different system of equations turns out to be convenient. 

1. INTRODUCTION 

In recent years a number of workers have obtained 
reasonably consistent descriptions of the interactions 
of the electric, magnetic, and electromagnetic fields 
with deformable continua, beginning with the work of 
Toupinl in 1956, in which he derived a properly in­
variant description of static electroelasticity from a 
variational principle. Subsequently, Eringen2 obtained 
a similar consistent description of static electroelas­
ticity from a somewhat different variational prin­
ciple. Some time later Brown,3 and Tiersten4,5 pre­
sented essentially equivalent rotationally invariant 
descriptions of magnetoelasticity. The former author3 
employed a variational principle to treat the static 
case, while the latter4 introduced a continuum model 
and employed the notion of the quasi static magnetic 
field to treat the dynamic case in the presence of 
heat conduction, linear mechanical viscosity, and 
magnetic dissipation. Shortly thereafter Eastman 6 
reported on a wave velocity experiment, using a 
static biasing magnetic field, in agreement with the 
linear limit of the rotationally invariant nonlinear 
description of magnetoelasticity and at variance with 
the linear descriptions of Kittel, 7 Schlomann,8 and 
Akhiezer, Bariakhtar. and Peletminskii,9 which are 
based on the infinitesimal magnetostrictive theory of 
Becker and Doring. 10 Recently Tierstenll introduced 
a continuum model of polarization and employed the 
notion of the quasi-static electric field12 to obtain a 
description of dynamic thermoelectroelasticity. In 
the static case in the absence of heat conduction, 
these equations are equivalent to those of Toupinl 
and Eringen.2 

In 1963 Toupin13 presented a theory of the electro­
dynamics of finitely deformable, polarizable continua. 
This description encompasses electromagnetic pro­
pagation and reduces to his earlier theory in the 
static case. Toupin obtains his equations by postu­
lating certain electromagnetic-mechanical inter­
action terms without defining a model in any specific 
detail. In 1965 Dixon and Eringen14 employed a par­
ticle model and averaging techniques to obtain equa­
tions for the electrodynamics of deformable continua. 
When the unusually general case treated by Dixon and 
E ringen 14 is reduced to that treated by Toupin,13 the 
resulting equations appear to differ in certain res­
pects. Penfield and Haus15 have discussed the inter­
action of the electromagnetic field with deformable 
continua in a variety of circumstances. Throughout 
their treatment, they employ a procedure they call 
the PrinCiple of Virtual Power in order to obtain 
momentum interaction terms, and they systematically 
employ the concept of magnetic poles and use the 
formalism of Chu, 16 which they compare to other 
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formalisms. It is difficult to compare their equations 
with those of others in seemingly equivalent situa­
tions because they do not present the complete con­
stitutive theory. Recently, Nelson and Lax,1 7 in a 
treatment of the acoustical scattering of optical 
waves, obtain a description of the interaction of the 
electromagnetic field with a finitely deformable, 
polarizable continuum by means of a variational prin­
ciple. The resulting equations, although similar to, 
appear to differ in certain respects from those of 
Toupin13 and Dixon and Eringen.14 However, more 
careful examination may reveal that they are actually 
equivalent in more ways than are readily apparent,18 
None of the aforementioned electrodynamiC works is 
Lorentz invariant, but that is not a severe limitation 
because material velocities encountered in practice 
are considerably less than the speed of light. Never­
theless, Grot and EringenI9 obtained a Lorentz in­
variant description using an appropriately simplified 
version of the model of Dixon and Eringen14 and 
Bragg20 presented a Lorentz invariant description of 
the electrodynamiC theory of Toupin.13 In the ab­
sence of intrinsic magnetic moment, the low velocity 
limit of the work of Grot and Eringen19 has been 
shown21 to be equivalent to that of Toupin.13 How­
ever, the flexibility of the model as related to its 
potential use in diverse physical situations and the 
range of applicability of the resulting equations are 
of greater interest to us at present than whether or 
not a particular set of equations is Lorentz invari­
ant, although Lorentz invariance per se is certainly 
desirable. 

In this paper the differential equations and boundary 
conditions describing the behavior of a finitely de­
formable, polarizable, and magnetizable, heat con­
ducting continuum in interaction with the electromag­
netic field are derived by means of a systematic 
application of the laws of continuum physics to a well­
defined macroscopic model consisting of appropri­
ately defined interpenetrating continua. Magnetic 
spin resonance and both ionic and electronic polari­
zation resonances are included in the treatment. In 
essence, this work couples previous work in magne­
toelasticity4 with an extended version of recent work 
in thermoelectroelasticity.11 The resulting descrip­
tion is not Lorentz invariant, but, as already noted, 
that is not a severe limitation because macroscopic 
material velocities are considerably less than the 
speed of light. However, it is to be noted that the 
description should be accurate to terms linear in the 
ratio of the material velocities to the speed of light, 
and, consequently, should be capable of accurately 
describing very small velocity effects. Moreover, as 
we indicate later on, there are reasons to believe that 
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it will not be difficult to find the equivalent Lorentz 
invariant description in simplified cases. 

The model, from which the description is obtained, 
consists of an electronic charge and spin continuum 
coupled to a lattice continuum. The lattice continuum 
is somewhat more complicated than any considered 
heretofore, 4,11 in that it consists of two interpene­
trating ionic continua, which can displace with res­
pect to each other and, thus, produce ionic polariza­
tion. The electronic continuum is a combination of 
one used previously in magnetoelasticity4 and one 
employed recently inelectroelasticity, 11 in that both 
the charge and angular momentum of the electronic 
continuum are taken into account. However, the defi­
nition of the spin continuum employed here is more 
fundamental than the one used previouslY,4 in that 
this one consists of a circulating current density, 
which, in the appropriate limit, accounts for the mag­
netization. The more fundamental approach employed 
here results in a different and more satisfying des­
cription of the magnetic energetics. The difference, 
although important in principle, is not Significant in 
practice whenever quasi-magneto statics is applicable. 
The identified continua interact by means of defined 
local electric and magnetic material fields, which 
cause balancing forces and couples to be exerted be­
tween the continua. 

Since the fundamental electrical and magnetic con­
stituents of the matter are taken to consist of charge 
and current as opposed to polarization and magneti­
zation, the electromagnetic field interacts with the 
material continuum in accordance with the Lorentz 
force. However, the rates of supply of linear mo­
mentum and energy from the electromagnetic field 
to the magnetized and polarized continuum are deter­
mined from the Lorentz prescription by means of 
appropriate continuum definitions of magnetization 
and polarization rather than by some particle aver­
aging techniques, as has been done in the past. In so 
doing we are able to treat magnetization in addition 
to polarization, and in a straightforward analogous 
manner; and further, we are able to treat magnetism 
as a dynamic current-induced phenomenon, which we 
find desirable since magnetic monopoles have never 
been observed experimentally. Lorentz, in his theory 
of electrons,22 does not attempt to treat magnetiza­
tion explicitly, nor do Toupin13 or Nelson and Lax. 17 
Dixon and Eringen14 include magnetization and define 
a model in some detail, but their model is a particle 
model and does not consist of interpenetrating con­
tinua and is not defined in as much specific detail as 
the one employed here. 

The application of the appropriate equations of bal­
ance of mass and momentum to the respective con­
tinua yields the material equations of motion, which, 
with the electromagnetic field equations, constitute, 
as usual, an underdetermined system. The applica­
tion of the equation of the conservation of energy to 
the combined material continuum results in the first 
law of thermodynamics which, with the aid of the 
second law of thermodynamics23 - 25 and the prin­
ciple of material objectivity,26,27 enables the deter­
mination of the constitutive equations of our nonlinear 
theory. These constitutive equations along with the 
aforementioned equations of motion and electromag­
netism and the thermodynamic dissipation equation 
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result in a properly determined system, which can 
readily be reduced to 16 equations in 16 dependent 
variables. This system of equations in addition to 
encompassing such phenomena as magnetic spin re­
sonance including the exchange interaction and ionic 
and electronic polarization resonances, also accounts 
for frequency dispersion caused by ionic polarization. 
This occurs because the material stored energy func­
tion turns out to depend 'on the ionic polarization gra­
dient, among other variables, on account of the defi­
nition of the ionic continuum. Mindlin28 has con­
sidered the dependence of the stored energy function 
on the polarization gradient in the static linear case 
by means of a variational technique. The relation of 
Mindlin's theory of the polarization gradient to the 
small displacement equations of lattice dynamics has 
been discussed by Askar, Lee, and Cakmak. 29 

When the interaction problem under consideration is 
such that ionic and electronic polarization reso­
nances can be left out of account and the dependence 
of the stored energy function on the ionic polariza­
tion gradient can be ignored, the distinction between 
ionic and electronic polarization may be omitted and 
the model of polarization may be replaced by the 
simpler electronic-lattice continuum model employed 
previously.11 If, in addition to the abovementioned 
simplifications, magnetic spin resonance and the ex­
change interaction are left out of account, the result­
ing system of nonlinear equations can readily be re­
duced to eight equations in eight dependent variables 
in place of the aforementioned 16 equations in 16 de­
pendent variables. Under appropriate Circumstances, 
intermediate systems of equations can be obtained. 
These reductions are greatly facilitated by the use of 
a Legendre transformation in the first law of thermo­
dynamics, which in each instance results in a valu­
able change of constitutive variables. 

In order to complete the system of equations, jump 
(or boundary) conditions across moving, not neces­
sarily material, surfaces of discontinuity are deter­
mined from the appropriate integral forms of the 
field equations, which are taken to be valid even when 
the differential forms from which they were obtained 
are not. In addition to the integral forms of the bal­
ance equations, important integral forms of the mo­
mentum and energy relations for the electromagnetic 
field equations in deformable continua are obtained 
from the aforementioned fundamental expressions 
for the rates of supply of momentum and energy from 
the electromagnetic field to the matter with the aid of 
the low velocity limit of the relativistic transforma­
tions of the electromagnetic field vectors. The inte­
gral form of the momentum relations results in ex­
pressions for the Maxwell tensor and the electromag­
netic momentum that reduce to those of Livens30 

when the matter is at rest. The integral form of the 
energy relation reduces to Poynting's theorem, which 
is interpreted in a somewhat more general way than 
heretofore, when the matter is at rest. The integral 
form of the momentum relations is essential in the 
determination of boundary conditions, which are re­
quired if boundary value problems are to be properly 
formulated and solved. The integral form of the 
energy relation is required in principle, provides 
interesting insight and can be used to obtain approxi­
mate information about jumps across surfaces of dis­
continuity when a solution is not available. 
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2. THE INTERACTING CONTINUA 

As stated in the Introduction, the macroscopic model 
consists essentially of an electronic charge and spin 
continuum coupled to a lattice continuum, which, in 
itself, consists of two interpenetrating ionic continua. 
Actually there are two electronic continua, one for 
each ionic continuum. However, as we shall see, a 
sufficient number of assumptions are made so that 
the two electronic continua can be regarded essen­
tially as one. Initially, all continua occupy the same 
region of space and, hence, have the same material 
coordinates XL' The motion of a point of the lattice 
continuum, which is at the center of mass of the ionic 
continua, is described by the mapping31 

y = y(X, t), (2.1) 

which is one-to-one and differentiable as often as 
required. In (2.1), the Yi denote the spatial coordi­
nates and XL' the material coordinates and t denotes 
time. We conSistently use the convention that capital 
indices denote the Cartesian components of X and 
lower case indices, the Cartesian components of y. 
(X and y denote the initial position of all material 
points and the center of mass of the ionic continua, 
respectively.) Both dyadic and Cartesian tensor nota­
tions are used interchangeably. A comma followed 
by an index denotes partial differentiation with res­
pect to a coordinate, Le., 

oYi oXK 

Yi.L = ax
L

' XK•j = aYj' (2.2) 

and the summation convention for repeated tensor 
indices is employed. The lattice continuum has a 
positive charge denSity cr l and the (total) electronic 
continuum, a negative charge density a e • The plus 
(minus) ionic continuum has a positive net charge 
density a+ (a-), which consists of a positive lattice 
charge density al+(a l-) and a negative electronic 
charge density ae+(a e -), and we may write 

and 

so that we have 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Clearly, in addition to possessing charge, each por­
tion of each ionic continuum po.ssesses mass, and we 
have the analogous mass relationships 

p+ = pi> + pe+, (2.8) 

p- = pl- + pe-, (2.9) 

pi = pl+ + pl-, (2.10) 

pe = pe+ + pe-, (2.11) 

where the p with the appropriate superscript refers 
to the mass density of the continuum associated with 

TABLE 1. Charge densities of continua. 

Lattice Electromc Total 

+ Ionic aU cre ' cr' 

- Ionic al- ae- rJ 

Total a l ae 0 

that superscript, and aU p and a in (2.3)-(2.11) have 
the same material coordinate X. Clearly, from 
(2.8)-(2.11), we have 

(2. 12) 

where p is the (total) mass denSity of the combined 
continuum. 

In a (finite) motion, the ionic continua are permitted 
to displace with respect to the center of mass of the 
ionic continua by infinitesimal displacement fields 
w+ and w- and each electronic continuum is permit­
ted to displace with respect to its ionic continuum by 
additional infinitesimal displacement fields 1/+ and 
1/-. However, since we are interested in conSidering 
only one electronic polarization resonance, we arbi­
trarily assume that 1/' = 1/- = 1]. This is one of the 
assumptions which enables us to discuss one elec­
tronic continuum without regard to the ionic conti­
nuum with which the specific electronic continuum is 
associated. A schematic diagram indicating the 
motion of the model appears in Fig.!. The infinitesi­
mal displacement fields w+ , w-, and 1/ are regarded 
as functions of y and t and are constrained to satisfy 

1)k.k = 0, (2. 13) 

in order to assure that elements of the different 
continua, with the same material coordinates, have 
equal volumes at all times. Since the net charge den­
sity at any material point vanishes initially, i.e., in 
the reference configuration, and (2. 13) are satisfied 
identically, we have, by virtue of the conservation of 
charge, 

(2.14) 

(2.15) 

for all times. The charge relations contained in 
(2.3)-(2.7), (2.14), and (2.15) are shown in Table I. 

+ ionic 

+ electronic __ 
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FIG.1. Schematic diagram showing the relative displacements of 
the interacting continua. 
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On account of the conservation of mass and charge of 
each continuum and (2.13), the ratios of mass density 
to charge density for the respective continua are 

L 
cr -E 

y 

C 

t -

1- [ M I dw- M] cr E +c(v+ at )x B 

- iOnic continuum 

FIG.2. Schematic diagram showing the linear momentum and 
force and couple vectors acting in the negative ionic continuum. 
A similar diagram can be drawn for the positive ionic continuum. 

y 

FIG. 3. Schematic diagram showing the linear momentum and force 
vectors acting in the negative electronic continuum. A similar dia­
gram can be drawn for the positive electronic continuum. 

! 

1-

...__Mx F 

/--~ 

( M,:'\--=electroniC 

I 1- L !Y \ 
) M><B \ 

/ ~t(M@(Y)1 
/ w- / 

/ I 

( /1 
/ 

'-.... ,// ---/ 

continuum 

FIG. 4. Schematic diagram showing the angular momentum and 
couple vectors acting in the negative electronic continuum. A 
Similar diagram can be drawn for the positive electronic con­
tinuum. 
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fixed constant numbers, and we may write 

(2.16) 

where r+ and r- are given constants for a specific 
material and r e is the ratio of the mass to the charge 
of an electron. Although other r coefficients can 
readily be defined, r+ ,r -, and r e turn out to be the 
only ones needed because we introduce the additional 
material constants 

s = pejpl, (2.17) 

(2. 18) 

which are more convenient. In (2.18), MI+ and M'­
denote the magnetizations associated with the res­
pective ionic continua. From (2.14), (2.16), and (2.17), 
we have 

r- = - mr+. (2.19) 

Since a point y of the lattice continuum is defined as 
the center of mass of the interpenetrating ionic con­
tinua, we may write 

Iv+ (y + w+)p+dV + J~- (y + w-)p-dV 

== Iv(p+ + p-)ydV, (2.20) 

and Since, by virtue of (2.13), V+ == V- = V, we have 

(2.21) 

In addition, because of the conservation of mass of 
each ionic continuum, we further obtain 

dw· dw-
p+ dt + P- dt = 0, (2.22) 

where djdt denotes the material derivative32 follow­
ing y. 

The electronic continuum associated with each ionic 
continuum, in addition to possessing the negative 
charge density a e and appropriate linear momentum, 
possesses at each point a Circulating current denSity 
~CI i'ds, which in the appropriate limit accounts for 
the magnetization M', and angular momentum density 
M' /y (y the gyromagnetic ratio and a negative num­
ber), where M' is the magnetization referred to the 
instantaneous local rest system of inertia33 of that 
point y of the deformable continuum. Each electronic 
continuum interacts with its ionic continuum by 
means of defined local electric material fields Ee± , 

which cause equal and opposite forces ae±Ee± and 
- (Jei Eei to be exerted between the respective elec­
tronic and ionic continua that act through the res­
pective points (y + w± + 1}), and defined local magne­
tic material fields BLi, which cause equal and oppo­
site couples M'± x BLi and BL± X M'± to be exerted 
between the respective electronic spin and ionic 
continua. Each electronic spin continuum interacts 
with neighboring elements of the same spin continuum 
by means of a magnetic exchange field4 Fi, which 
acts across the surface of separation to produce a 
couple per unit surface area M'1 X F1. However, 
since we are interested in treating only one electro­
nic polarization resonance and one magnetic spin 
resonance, we arbitrarily assume that Ee+ = Ee- = Ee, 
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BL+ = BL- = BL, and F+ = F- = F. By virtue of these 
assumptions and the previous assumption on 1'/, we 
can usually discuss the two distinct electronic con­
tinua as if they were one. The ionic continua interact 
with each other by means of a defined local electric 
material field EL, which causes equal and opposite 
forces cr+EL and a-EL to be exerted between the ionic 
continua at the position y, and defined equal and oppo­
site local material couples c. Each ionic continuum 
interacts with neighboring elements of the same ionic 
continuum by means of a traction force per unit area 
tt acting across the surface of separation. As stated 
in the Introduction, the Maxwell electric field EM and 
magnetic induction field BM exert the usual Lorentz 
force on all elements of charge and current density. 
Schematic diagrams illustrating the abovementioned 
interactions in the model are shown in Figs. 2-4. 

3. THE EQUATIONS OF BALANCE 

In view of the discussion in Sec. 2, the equations of 
the conservation of mass for the different continua 
may be written in the form 

:t Jvp1 + dV = 0, :t Jvpe+ dV = 0, (3.1) 

.:r JvP 1- dV = 0, .:r Jvpe- dV = 0, (3.2) 

where V is an arbitrary element of volume for which 
each of the continua has the same material coordi­
nates. From (2.8), (2. 9) or (2.10), (2.11), and (2.12), 
(3.1), and (3.2), we obtain the equation of the conser­
vation of mass for the combined continuum in the 
form 

:t JvPdV = 0. (3.3) 

The equations of the conservation of linear and angu­
lar momentum for the electronic charge and spin 
continuum associated with the positive ionic con­
tinuum are, respectively, 

Iv ae+ [EM(y + w+ + 11) + Ee + b- (v + d~+ 

+ ~i) X BM(y + w+ + '1~ dV + Jv~c,i'+ds x BM(y)dV 

d r e+ ( + dw+ + d'1)dV (3.4) = dt )vp v lIt dt ' 

Jv(Y + w+ + '1) x ~ ae ... ~M(y + w'" + '1) + Ee 

If. d+ d) l + C\V + ; + /1 X BM(y + w+ + l1)J 

+ ~c,i'+ ds x BM(Y)~dV + i M" x FdS 

+ JvM'+ x (BM(y) + BL) dV = :t fv(y + w+ 

I. dw' d'1) d r M'· + fJ) x pe\v + lIt + dt dV + dt Jv ---:y-dV, (3.5) 

where v = dy / dt, i'+ is in magnetic units, C is the 
speed of light, C f is an arbitrary vanishingly small 
Circulating current loop taken to be stationary with 
respect to the local rest system of inertia Gaussian 
electromagnetic units are employed and we have 
used the relation34 

lim ~c'r x (if+ds x BM) 
r .... O 

i' +~ 00 
C'--+O in a plane 

= lim if+ .10 n x BMdS = Mf+ x BM, (3.6) 
-%->0 

where 
i'+ --?OO 
n fixed 

MI+ = lim i'+nSb· 
i'+~oo 
S6 -7>0 

nfixed 

(3.7) 

The equations of the conservation of linear and angu­
lar momentum for the lattice portion of the positive 
ionic continuum are, respectively, 

.1edS + fv[cr1+EM(Y + w+) - cre+Ee + cr+EL 

+ ~'(v + d;;+) X BM(y + w+)] dV 

= :t IVpl+ (v + d;+) dV, (3.8) 

1(y + w+) x edS + J~(y + w+) X [cr1+EM(Y + w+)-cre+Ee 

+ ~+ (v + d;;+) X BM(y + w+)] dV 

+ Jv[Y x a + EL + fJ x (- ae+Ee) C + BL x M"JdV 

= :t Jv(y + w+) X pl+ (v + d~+1 dV. (3.9) 

The equivalent equations of the conservation of linear 
and angular momentum for the electronic and lattice 
portions of the negative ionic continuum take the 
forms 

(3.10) 

fv(y + w- + '1) x ~cre- [EM(y + w- + '1) + Ee 

11. d - d) l + C\V + ;; + di X BM(y + w- + '1)J 

+ ~C,if-ds x BM(y)t dV + IsM'- x FdS 

+ I M'- X (BM(y) + BL)dV = :t Jv(y + w-

I. dw- d'1\ d r M'+ 
+ fJ) x pe-\v + lIt + dt} dV + dt )v-.ydV,(3.11) 

Is t-dS + fvla1-EM(y +w-) - cre-Ee + a-EL + a~- (v 

+ d~-) X BM(y + W-)] dV = :t Jvpl- (v + d~-)dV' 
(3.12) 

.1(Y + w-) x t-dS + Jv(y + w-) x [crl-EM(y +w-)-ae-Ee 

+ a~- (v + d~-) X BM(y + w-~ dV + Jv[Y x a-EL 
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+ w-) X pl- (V + d~-) dV. (3.13) 

Since w+, w-, and 1/ are all infinitesimal displacement 
fields, we expand EM and BM at (y + Wi + 1/) in a 
Taylor series about y and retain the first term to 
obtain 

EM(y + ~) == EM(y) + ~ - V EM(y), 

BM(y + ~) = BM{y) + ~. VBM(y), 

(3.14) 

(3.15) 

where V = eia /aYj and e i is a unit base vector in the 
ith Cartesian direction. However, since the displace­
ment fields w', w-, and 1/ constitute an integral part of 
the models of the ionic and electronic polarization 
densities, but bear no relation to the model of the 
magnetization densities, which consists of the circu­
lating current terms i'i ds, the expansion (3.15) is 
employed in charge density terms only and not in 
current density terms. This is tantamount to assum­
ing that i'ids experiences the BM at y rather than at 
(y + Wi + 1/). This fact has already been taken into 
consideration in writing Eqs. (3. 4), (3. 5), (3. 10), and 
(3.11). 

Substituting (3.14) and (3.15) into (3.4) and (3.10), 
taking the material time derivative, employing the 
second of (3. 1) and the second of (3.2), neglecting 
terms containing products of 1/ and/or Wi and utiliz­
ing the fact that V is arbitrary, we obtain, respec­
tively, 

ae+ 
ae+EM + ae+w', VEM + ae+1/' VEM + C V X BM 

+ ~. d~+ X BM + ~+ ~i X BM + 6 v X (w· • VBM) 

(3.16) 

ae -
ae-EM + ae-w-' VEM + ae -1/' VEM + C V X BM 

+ a 6
- dw- x BM + ae

- d1/ x BM + a6
- v X(W-, VBM) 

C dt C dt C 
ae-+ C v x (Tj' VBM) + ae-Ee + M'-' BMv 

= pe- dv + pe- d2w- + pe- d 21/ 
dt dt 2 dt2 ' 

(3.17) 

where we have utilized the relation34 

liE!, Jed'ids x BM = N~' ~ i'in ° (BMV)dS 
c' -+0 in a plane Sri .... 0 

n fixed 

(3.18) 

and employed (3.7). Adding (3. 5) and' (3.11), and 
utilizing the second of (3. 1) and (3. 2), (3. 4), (3. 10), 
and the relation 

(3.19) 

we obtain 
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.1 M' x FdS + JvM' x (BM + BL)dV = ~ Iv ~' dV, 

(3.20) 

which is the integral form of the conservation of 
angular momentum for the electronic spin conti­
nuum. 35 Application of (3.20) to an elementary tetra­
hedron in the usual manner yields the definition of 
the magnetic eXChange tensor A: 

F==-noA, (3.21) 

where n is the outwardly directed unit normal and, by 
virtue of the definition of F, we have, without any loss 
of generality, 

A-M' == 0, (3.22) 

which reduces from nine to six the number of pos­
sible components of A. Since the material is mag­
netically saturated and mass is conserved, the mag­
nitude of the magnetic moment per unit mass /J f

, 

defined by 

/J' == M' /p, (3.23) 

is conserved, and we have 

(3.24) 

and J.I ~ is constant in a homogeneous material. Sub­
stituting from (3.21) and (3.23) into (3.20), taking 
the material time derivative, utilizing (3.3), the 
divergence theorem and the arbitrariness of V, we 
obtain 

/J' x (BM - V • A - (l/p)Vp - A + BL) = ; 7t', (3.25) 

where we have introduced the condition36 

(3.26) 

which is required on account of (3.24). Equation 
(3. 25) is the magnetodynamic equation of motion of 
the spin system. Adding (3.16) and (3.17), and sub­
stituting from (2.6), (2. 11), and (3.19), we obtain 

(),eEM + (a.e+w+ + (),e--w-) - VEM + a6 1/' VEM 

+ ~e V X BM + b(ae+ d~+ + (),e- d~-) X BM 

+ ~ ~i X BM + b x [(ae+w+ + a6-.-) ° VBM) 

+ .! x (a e1/ ° VBM) + aeE" + M' • BMv == pe dv 
C & 

+ net d2w+ + e- d 2w- + e d21/ (3.27) 
I-' dt2 P dt2 P dt2 ' 

which is one form of the equation of motion of all the 
electronic charge, Le., of the electronic charge con­
tinuum. 

Application of (3.8) and (3.12) to an elementary 
tetrahedron in the usual manner yields the definition 
of the respective stress tensors of the positive and 
negative ionic continua, thus, 

(3.28) 

Substituting from the first of (3.28) into (3.8) and 
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from the second of (3.28) into (3.12), taking the mat­
erial time derivatives, using the first of (3.1) and 
(3.2), (3.14), (3.15), the divergence theorem and the 
arbitrariness of V, we obtain 

al+ al + al + dw+ 
+ C v X BM + C v X (w+ 0 VBM) + edt X BM 

1+ dv + 1+ d2w+ 
== p dt p dt2 ' 

(3.29) 

v 0 T- + ai-EM + al-w- 0 VEM - ae-Ee + a-EL 

al - a
'
- a l- dw-

+Cv XBM+CV X (W-oVBM) +Cdtx BM 

== pl- dv + pl_d2w-
dt dt2 ' 

(3.30) 

which are the stress equations of motion of the lat­
tice portions of the positive and negative ionic con­
tinua, respectively. Substituting from the first of 
(3.28) into (3.9) and from the second of (3.28) into 
(3.13), taking the material time derivatives, using 
the first of (3.1) and (3.2), the divergence theorem 
(3.29) and (3.30) and the arbitrariness of V, and 
neglecting products of w+, w- and/ or TJ in terms in 
which the Taylor expansions (3.14) and (3.15) were 
employed, but not in terms in which they were not, we 
obtain, respectively, 

elelijTiJ + C + BL X M'· + elelkj(wi,TiJ)'; + (]l+w. X EM 

+ ~+ w· x (v X BM) + w+ X (~ d~+ X BM) 

- (TJ + w·) X ae+Ee - w· x pl. dv _ w+ pl+ d
2w· == 0 

dt dt2 ' 
(3.31) 

eleZijTi} - C + BL X M'- + eZelkj(w;Tjj)'i + ul-w- x EM 

+ ~ w- x (v X BM) + w- X (~- d~- X BM) 

- (TJ + w-) x ue-Ee - w- X pl-~ - W- X pl- d
2w- == o. 

at dt2 

(3.32) 

The procedure used in neglecting products of w·, w­
and/or TJ implicitly assumes that the products of the 
magnitudes of any of the infinitesimal displacement 
fields with the magnitudes of the gradients of the 
electric and magnetic fields EM and BM are suffi­
ciently small compared to the fields themselves to 
justify the operations. NOW, substituting from (3.16) 
into (3.31) and from (3.17) into (3.32), employing 
(2. 3) and (2. 4) and neglecting products of w·, w- , and 
TJ resulting from the use of (3.14) and (3.15), we 
obtain 

e/eujTii + ezelkj(wi,T;"'),; + C + BL X M'+ + (]·w· X EM 

+ c: w· x (v X BM) + w· x (?;- ~~+ x BM) 

+ T/ x ae+EM + T/ x ~ (v X BM) + T/ x ~. e7t+ x BM) 

+ T/ x ~/dTl x BM\ + w. x ae+(dTJ x BM\ _ w' x p+ dv 
v \dt J C dt j dt 

d2w+ d 2TJ dv - w+ X p' -- - w+ X pe+ - - TJ X pe+ -
dt2 dt2 dt 

d2w· d 2TJ -11 X pe+ -- - TJ X pe+ - = 0 
dt2 dt2 ' 

(3.33) 

which constitute one form of the equations of the 
conservation of angular momentum of the positive 
and negative ionic continua, respectively, including 
the electronic continuum associated with each ionic 
continuum. 

At this point we introduce the following definitions, 

(3.35) 

(3.36) 

where pe and pI, 'lfe and 'If I are the electronic and 
ionic polarizations per unit volume and per unit 
mass, respectively. In view of (2.14), (2. 17), (2. 21), 
and (3.36), we have 

(3.37) 

and from (3.35)-(3.37), (3.1)-(3. 3), (2.16), and (2.22), 
we have 

(3.38) 

d'lf I dw· _ dw- dw-
Pdt = u· dt + u (If' = (1 + m) () df 

_ (m + 1) + dw+ (3.39) 
- \ m a dt . 

From (3.1)-(3.3) and (2.16), we find 

hence, we may write 

(3.40) 

(3.41) 

Substituting from (3.35), (3. 36), and (3.38)-(3.41) 
into (3.27) and utilizing (2.6), (2. 12), (2. 16)-(2.19), 
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(2.21), (2. 22), and possibly some other relations in 
Sec.2 and (3.23), we obtain 

EM + (111 - e\ r+1(I. VEM + r
e 
1(e. VEM +!.. X BM 

\1 + e/ (3 C 

+ (J1l - e\ r+ drr I x BM + ~ d1r e X BM 
\'1 + e1 C dt (3C dt 

+ (nz - ~ r+ V X (1rI. VBM) 
1 + e7 C 

r e r e 
+ (3C v X (1r e • VBM) + Ee + {3 p.' • BMV 

dv (m - e) d 21(I (r e)2 d 2 rre =re-+r+r e --- --+ ----
dt 1 + e dt2 (3 dt2 

(3.42) 

which can properly be called the equation of motion 
of the electronic polarization, and where 

(3 = s/(1 + s). (3.43) 

Adding (3.29) and (3.30), substituting from (3.16) and 
(3.17) and utilizing (2.3), (2. 4), (2. 8), (2. 9), (2.12), 
(2.14), (2.16), (2. 22), (3. 35), (3. 36), and (3.38)-(3.40), 
we obtain 

v • r + P • VEM + !.. x (p. VBM) + ~ du X BM 
C edt 

dv d2 1r e 
+ M' • BMV = P - + rep -- (3.44) 

dt dt2 ' 

which are the stress equations of motion of the com­
bined continuum, consisting of the positive and nega­
tive ionic continua including the electronic continuum 
associated with each, and where p detYi,M = Po' the 
initial mass density and 

T=T++r-, p=pI+pe, 1r=1r1 +1r e, (3.45) 

where r is the total mechanical stress tensor and P 
and 1r are the ordinary total polarizations per unit 
volume and per unit mass, respectively. Now, sub­
tracting l/m of (3.30) from (3.29), substituting from 
(3.16) and (3.17) and employing (2.3), (2.4), (2. 6), 
(2.8), (2. 9), (2.14), (2.16)-(2.19), (2. 21), (2. 22), 
(3.23), and (3.35)- (3.41), we obtain 

mr+V • A + pEM + r+(m - I)PI. VEM + pEL 

+ p V X BM + r+(m - 1) v X (Pl. VBM\ (j C --I 

+ r+(m - 1) d1r1 X BM + + 1m - e\ pe. VEM 
C P dt r \1 + eJ 

+ + (rn - e) E. due X BM + r+ (m - e\ 
r 1 + e C dt C 1 + ej V 

+ r+(m - rm) M' • BMV 
(1 + rm) 

d21rI (m - e) d 2 1r e = m(r+)2p __ + yey+ --- p --, 
dt 2 1 + e dt2 

where 

A = r+ - .!. r-, 
m 

(3.46) 

(3.47) 

and A is called the ionic polarization stress tensor. 
Equation (3.46) can properly be called the equation 
of motion of the ionic polarization. Adding (3.33) and 
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(3.34) and employing (2.6), (2.14), (2. 16)-(2.19), 
(2.21), (2.22), (3.19), (3.35)- (3.41), (3.45), and (3.47), 
we obtain 

(3.48) 

which is the equation of the conservation of angular 
momentum for the combined continuum. As can 
readily be seen, this has been an involved derivation 
of a rather complicated relation. However, in Sec. 6 
we shall show that this rather complicated relation 
is a straightforward consequence of the principle of 
material objectivity, which in this instance is satis­
fied if the stored energy function is invariant in a 
rigid rotation. As a consequence, the equation of the 
conservation of angular momentum is not explicitly 
required because it is satisfied identically by virtue 
of the abovementioned rotational invariance condi­
tion. Moreover, since we are not interested in evalu­
ating the couple of interaction C between the ionic 
continua, which couple can readily be determined a 
posteriori, the difference equation of the conservation 
of angular momenta of the ionic continua is not of 
interest and will not be presented. 

Since the electromagnetic field vectors EM, BM, P, 
and M' appear in the pertinent equations of balance 
(3.25), (3.42), (3.44), and (3.46), the Maxwell electro­
magnetic field equations naturally must be included 
as part of the theory. Consequently, we briefly dis­
cuss the electromagnetic field equations for continua 
in the next section. 

4. THE ELECTROMAGNETIC FIELD 

As we have already noted, the field vectors EM, BM, 
P, and M' must satisfy the Maxwell field equations 
for electrical insulators, which in Gaussian units 
take the form 37 

aD cv x H = at' ( 4. 1) 

aBM 
Cv x EM = - at' (4.2) 

where C is the speed of light, 

D = EM + 41TP, H = BM - 41TM (4.3) 
and 1 1 

M=M'-CvXP', P=P'+CvxM', (4.4) 

are the low velocity limit of the relativistic trans­
formations 38 from one inertial coordinate system to 
another. In (4.4) P' and M' are the polarization and 
magnetization, respectively, in the instantaneous 
local rest system of inertia for the point y(X, t) mov­
ing with velocity v relative to our rest system of 



                                                                                                                                    

E L E C T ROM A G NET I C D E FOR M A B LEI N S U L A TOR I N T ERA C T ION 369 

inertia, and P and M are the polarization and mag­
netization, respectively, in our rest system of inertia. 
In addition to (4.1) and (4. 2), the auxiliary Maxwell 
equations 

v • BM = 0, V • D = 0, (4.5) 

are satisfied identically. Equations (4.1), (4. 2), and 
(4. 5), respectively, may properly be regarded as 
consequences of the integral forms 39 

(4.6) 

(4.7) 

(4.8) 

from which (4.1), (4. 2), and (4. 5) can be obtained 
when the field vectors in (4. 6}-(4. 8) are properly 
differentiable. However, (4. 6}-(4. 8) are taken to be 
valid even when the field vectors are not differen­
tiable and, consequently, (4.1), (4. 2), and (4.5) are not 
valid. In (4. 6}-(4. 8), c denotes a closed circuit sur­
rounding an open area sand S denotes a closed sur­
face surrounding a volume V, all of which are sta­
tionary with respect to our inertial reference system. 
Clearly, Eqs. (4. 6}-(4. 8) can be used to determine 
jump conditions on the field vectors across moving 
surfaces of discontinuity in addition to determining 
(4.1), (4. 2), and (4. 5) under appropriate circumstan­
ces. Detailed use is made of (4. 6)- (4.8) across 
moving surfaces of discontinuity in Sec. 7. 

In view of Eq. (3. 44), which is the conservation of 
linear momentum for the combined material con­
tinuum, there is an electromagnetic force relation 
that can be derived with the aid of (4.1}-(4. 5) and 
used to obtain an integral form from (3. 44), which 
can be used to determine jump conditions on traction 
across moving surfaces of discontinuity. We now 
proceed to derive this integral form. To this end we 
consider the electromagnetic body force term in 
(3. 44), which resulted from our model and in indicial 
notation takes the form 

f - P EM M 'BM + 1 P RM + 1 d1f k B M 
j - i j.i + i i.j C ejk1vk i~.i CejkZP dt z , 

(4.9) 
which with the aid of the relations 

dp 
dt = - PVk •k , (4.10) 

(4.11) 

can be written in the form 

f = P.E.M. + M 'BM. + -c1, e·kZvkP EzM. J z. },t t t,) } t ,t 

1 oPi 1 
+ Cejil arBzM + CejkZ(PkVi).iBzM. (4.12) 

From (4.1), (4. 3), and (4.4), introducing indicial 
notation, we obtain 

oP. C 1 aEf at = 41f eirk(B r - 41fM';).r + (ViP; - vrPj}.r - 41f at' 
(4.13) 

which, with the aid of (4.2), enables us to write 

1 a (e .. z ? + _ (PI PI) BM __ J' EMBM 
CejiZ Vi r -Vr i .r Z at 47TC i Z 

E.M 
- -4' (EM. - £.M). (4.14) 1f '.j ].' 

Substituting from (4.14) into (4. 12) and employing 
(4.3), (4.4), and the second equation of (4. 5) and neg­
lecting terms in vk v/C2, we obtain 

f. = ~[41TP.E.'M + E!dEM + B.MBM - 41fBMM' 
J 41f • J ') • J 'J 

- ~ (E:Er + WJ!Bf- 81fM"Bf)llijL 

-:t (:~~ EfBzM ), 

where 

E lM _ EM + 1 BM 
j - j CejkZvk z, 

(4.15) 

(4.16) 

and (ejilEiMBzMj41fC) is Livens'40 expression for the 
linear momentum of the electromagnetic field, and 

Ti~M = ~[41fP.EIM + E.M£.M + BMB.M - 41TB.MM! 
1.1 41f ' J 'J • J 'J 

- ~(E:EI! + BrBI! - 81TM';BkM}llij ], (4.17) 

is the Maxwell electromagnetic stress tensor for our 
polarizable and magnetizable deformable dielectric 
continuum. 

When the dielectric is rigid and at rest with respect 
to our inertial reference system, v == 0, EM == E'M, 
and M' == M, and the force relation (4.15), and the 
expression for the Maxwell stress tensor (4. 17), 
reduce to those of Livens. 4o Consequently, these 
electromagnetic force relations for a deformable con­
tinuum can be considered to be a generalization of the 
force relations of Livens40 for the rigid continuum. 
It should be carefully noted that these electromagne­
tic force relations are valid only to terms linear in 
vjC because terms quadratic and higher in vjC have 
been neglected in the derivation of these relations. 

Substituting from (4. 9), (4.15), and (4.17) into (3. 44), 
integrating over an arbitrary material region and 
employing the divergence theorem, the transport 
theorem41 and (3. 3), we obtain the integral form 

Is n· (T + TEM + vg) dS = :t Iv( pv + rep ~~e + g)dV, 

(4.18) 
where 

g = EM X BMj41TC (4.19) 

is the electromagnetic momentum in Gaussian units. 
When the dependent variables are properly differen­
tiable, the differential form (3. 44) can readily be 
obtained from (4.18). However, the integral form 
(4.18) is taken to be valid even when the field vari­
ables are not differentiable and the differential form 
(3.44) cannot be obtained, such as across surfaces of 
discontinuity. Equation (4.18) is applied across mov­
ing surfaces of discontinuity in Sec. 7 in the deter­
mination of jump conditions on traction. When all the 
appropriate substitutions are made, Eqs. (3. 25), 
(3.42), (3. 44), (3.46), (4.1), and (4.2) constitute an 

J. Math. Phys., Vol. 13, No.3, March 1972 



                                                                                                                                    

370 H. F. TIE R S TEN AND C. F. T S A I 

underdetermined system and const,itutive equations 
are required in order to obtain a determinate sys­
tem, as usual with continuum descriptions. To this 
end we consider the conservation of energy for the 
material continuum in the next section. 

5. THERMODYNAMIC CONSIDERATIONS 

The conservation of energy for the combined mat­
erial continuum, which consists of the positive and 
negative ionic continua including the electronic con­
tinuum associated with each, can be written in the 
form 

#t Iv (T + pE) dV = Is [t+ -(v + d"'!t+) + t- - (v + d"'!t-) 

(5.1) 

where T is the kinetic energy per unit volume, E is 
the internal stored energy per unit mass, t± - (v + 
dwi/dt) denote the rates of working per unit area of 
the mechanical surface tractions acting in the posi­
tive and negative ionic continua, respectively, 
F - pdjJ' /dt is the rate of working per unit area of the 
surface exchange torques,42 n - q is the rate of eff­
lux of heat per unit area and E is the rate of supply 
of energy to the entire material continuum from the 
electromagnetic field. In order to obtain expressions 
for T' and E, we must return to our model of the com­
bined material continuum. 

From the model of the continuum it is clear that the 
kinetic energy per unit volume is of the form 

T - .!.r. 1+( dW+) _ ( + dW+) 
- 2~ V + dt . v dt 

+ pe+( V + d: + ~i) -(v + d"'!t+ + ~i) 

(5.2) 

and the kinetic energy associated with the spin angu­
lar momentum has been omitted since its material 
time derivative vanishes on account of (3.3) and 
(3.24). Expanding terms in (5.2) and employing 
(2.8)-(2.12), (2. 14), (2.16)-(2. 19), (2. 22), (3. 38), 
(3.39), and (3.43), we obtain 

p [ d1TI d1TI (ye)2 d1T e d1T e 
T = 2" v - v + m (y+)2 dt -dt + -(3 - dt - dt 

d1T e (m - e) d1T
e 

d1T 1J + 2y ev - dt + 2rey+ T+e dt - dt . (5.3) 

From the fundamental charge and spin model of the 
continua, the rate R M at which work is done on the 
matter by the Maxwell electric field EM is of the 
form 

R M = (TI+(V + ddt+) - (EM + w+ - VEM) 

+ (Te+ (v + dt:7t+ + ~i)- (EM + W' -VEM + 71- VEM) 

+ (TI- (v + dt:7t) - (EM + w- - VEM) 

+ (Te- (v + dt:7t- + ~i) -(EM + W- - VEM + 71- VEM) 
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+ C lc' i'ds - EM, (5.4) 

and the rate at which work is done by the magnetic 
induction field BM is zero in general because funda­
mentally the force exerted on any moving charge 
element by BM is always normal to the instantaneous 
total velocity of that charge element. Consequently, 
the rate at which work is done on the matter by EM 
is identically the rate of supply of energy to the 
matter from the electromagnetic field, and we have 

(5.5) 

The constant C appears in the last term of (5.4) 
because i' is in magnetic units. The last term in 
(5.4), which represents the rate at which work is 
done by EM on the Circulating conduction current 
loops ~c' i'ds, may, with the aid of (4.2), be written 
in the form 

C lo i'ds - EM = cIs, i'o - V x EMdS 
r·, aBMdS =-Js,zn-ar ' 

which, with (3.7) in the limit, yields 

lim C j;o i'ds - EM = - lim i'ls' n - aiJBtM dS 
if....." 00 i/~ 00 0 

c' .... O in a plane so .... 0 
n fixed 

=_M,_aBM (5.6) 
at 

In the magnetic terms in (5.1) and (5.4) the notation 
for the + and - continua has been dispensed with and 
the sum of both used directly. Substituting from 
(2.3), (2. 4), (2. 6), (3. 35), (3. 36), (3. 38), (3. 39), the 
second and third equation of (3.45), and (5. 6) into 
(5.4), and neglecting products of Wi and 1], we obtain 

• aBM 
E = EM - P dt + P - VEM - V - M' - at. (5.7) 

Substituting from (2.16), (2.17), (2.22), (3. 39), (5. 3), 
and (5.7) into (5.1), we obtain 

(5.9) 

and from (3.28), (3. 45), and (3.47), we have 

(5.10) 

and t is the mechanical traction vector of the ionic 
material continuum and d may be thought of as an 
ionic polarization traction vector acting across 
neighboring surfaces of the ionic continuum. Taking 
the material time derivative in (5.8) and using (3.3), 
substituting from (3.21), (3. 45), and (5.10), employing 
the divergence theorem (3.24), (3. 25), (3.42), (3. 44), 
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aB.M , , 
- P/J-j ---ar- - qi,j' 

where we have introduced indicial notation and 

Pe +(m -e\ IEM + eEM + re 
eBM 

"j = r T+eJ 7Tk j. k 7T k j.k [3C €]kZVk7Tm Z. m 

r+ m - e BM + Ee + r e 
'RM + C T+e ejkZVk7Tm Z.m j 73 jJ.~k.j· 

Employing (4.11), with Pi replaced by BiM , and 
defining 

we may write (5.11) in the form 

dX djJ.j d7T/ d7Tt
e 

P dt = TtjVj •t - Bf Pdt - 8{p dt - 81P df 

-A;jpe7).i + ~t/~[).i - qt.i' 

(5.11) 

(5. 12) 

(5.13) 

(5.14) 

(5. 15) 

(5. 16) 

which is the first law of thermodynamics for our 
combined continuum. 

Since we are considering a heat conducting, polari­
zable and magnetizable, deformable ionic continuum 
without viscous type dissipation and with a first law 
of thermodynamics of the form shown in (5.16), the 
mathematical expression of the second law of 
thermodynamics may be written in the form 43 - 45 

dX L d/J-j 8 d7T/ d7Ti" 
P dt - TjjVj •i + Bi Pdf + [p dt + 8fP dt 

(5.17) 

where 8 is the positive absolute temperature and 1) 

is the entropy per unit mass. From (5.16) and 
(5.17), we have the dissipation equation 

dT] - qt.t = p8 dt ' (5.18) 

and the entropy inequality may be written in the form 

P d." + (~\ . = _ qje. i = r:> 0 (5.19) 
dt eJ., 82 p - , 

where r is the (positive) rate of entropy production. 
At this pOint it should be noted that this continuum 
theory can readily be gene.ralized46 ,47 to account 
for arbitrary functional (viscous) constitutive res­
ponse in the manner set forth in a previous paper.ll 

Before proceeding to a determination of the consti­
tutive equations, we wish to write the conservation 

of energy (5.8), in a particularly interesting integral 
form in which no volume source terms appear. To 
this end we consider the expression (5.7) for ~, 
which, with the aid of (4.10) and (4.11), can be 
written in the form 

ap. aBiM 
~ = Ef ai- + (V?t), kE;M + PjE!f.iVk - Mj at. (5.20) 

Substituting from (4.2) and (4.4) into (5.20) and 
neglecting terms in Vjv,jC 2, we obtain 

ap. aB.M 
~ = EjM at' - M j aT- + (vkPjEiM),k' (5.21) 

From (4.1) and (4.2) in the usual waY,48 with the 
aid of (4.3), we obtain 

(
c \ aUF ap. aB.M 

- 41T eijkEtHk). i = at + E;M at - Mi aT-' (5.22) 

where 
UF -..!.... (EMEM + BMBM) - 81T k k k k (5.23) 

may be interpreted as the free-space electromag­
netic field energy. Equation (5.22) is a particularly 
interesting and useful differential form of Poynting's 
theorem for nonconducting continua. 49 Since the form 
in (5.22) depends only on the validity of Maxwell's 
equations [Eqs. (4.1) and (4.2)1 and the relations 
(4.3), and is independent of any particular constitu­
tive assumption, it is always valid. Substituting from 
(5.3), (5.21), and (5.22) into (5.1), and employing the 
divergence theorem and the transport theorem,41 we 
obtain 

d r [p I. + d1T~ d11), (ye )2 drrt dne,. 
{[[ Jv 2\VkVk + m (r )2 """([( dt + -{3-"""([("""([( 

dne,. (m - e) drrg d1Tk) J 
+ 2r e vk """([( + 2r e r+ 1 + e df df + PE + UF dV 

J l d1T{ dlJ.' 
= s tpj + mr+dj d! + FjP d/ - njqi 
- nj ~7T ejjkFJM Hk + nkv?jEp + nkvpF]dS, (5.24) 

which is the particularly interesting integral form of 
the equation of the conservation of energy we have 
been after. As with all such forms, Eq. (5.24) is taken 
to be valid across moving surfaces of discontinuity 
even when (5.1) is not meaningful, and (5.24) reduces 
to (5.1) [or (5.8») when P, M, EM, and BM are appro­
priately differentiable. Clearly, Eq. (5.24) enables 
the determination of jump conditions on the energy. 
Moreover, Eq. (5.24), which is a consequence of our 
model, says that the material time rate of change of 
kinetic plus stored internal plus electromagnetic 
field energy is equal to the rate at which work is 
done by the mechanical surface tractions, magnetic 
exchange torques and ionic polarization tractions act­
ing across S less the flux of thermal and electromag­
netic Poynting energy outward across S plus a con­
vective flux of electromagnetic field energy and elec­
tric field- electric polarization interaction energy. 

6. CONSTITUTIVE EQUATIONS 

Since we are concerned with thermodynamic proces­
ses for which both the state function equation (5. 17) 
and the dissipation equation (5.18) are valid, we may 
determine the heat conducting constitutive equation 
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from (5.19) and the remaining constitutive equations 
from (5. 17), which, by virtue of the relations 

d (dll;) d 
vj .i = XM,i df (Yj,M)' dt. i = XM.i dt (J1j.M)' 

may be written in the form 

dX d . dtJ. ~ drr! 
p dt = TijXM,i df (Yj,M) - pB/df - p85 dt 

drr~ d 
- pSj dt - pAjXM.i dt (J1j,M) 

d d1) 
+:DijXM.i dt (rr!.M) + pe(f[ • (6.1) 

Since the entropy inequality is of the form shown in 
(5.19), it turns out to be convenient to define the 
thermodynamic function 1/; by the Legendre transfor­
mation 

1/1 = X - 1)e. (6.2) 

The substitution of the material time derivative of 
(6. 2) into (6. 1) yields 

dl/l d dtJ.j drrJ 
p dt = TijXM.i dt (Yj.M) - pBJ df - p$J dt 

d~ d d 
- pSI af - pAjXM,i dt (tJ.j.M) +:DijXM.i dt (rrJ,M) 

de 
- P1) dt • (6.3) 

Motivated by (6.3), we assume 

1/1 = 1/1 (Yj.M; tJ.;; rrJ; rrJ ; tJ.j.M; rrJ.M; e), 
whence 

dlJ; a 1/1 d a 1/1 dtJ. ~ at/.-, drrl 

dt = a (Y' M) dt (Yj.M) + Oll~ dt + arr! dt 
J. } J 

(6.4) 

+ ~ drrJ + al/l !!:..- (tJ.' ) + ~ ~ (rrI ) 
arrl dt a (tJ.~ ) dt j.M a (rrl ) dt j.M 

J.M J.M 

+ al/l de (6. 5) 
ae dt' 

At this point we must recall that 12 of the 37 time 
derivatives appearing on the rhs of (6.3) and (6.5) are 
not independent, but on account of (3.24) are connec­
ted by the four relations 

Consequently, we must introduce four Lagrangian un­
determined multipliers A and L M , then multiply (6.6) 1 

by A and (6. 6) 2 by LM and add the sum to the rhs of 
(6.3) while substituting from (6. 5) to obtain 

(TjjXM •i - p a(~~M») d~- (Yj.M) - p (Bf - AtJ.j - LMl--lj.M 

+ at/;) diJ.j _ P(B! + at/;) drrJ _ p (&~ + ot/;\ d1Je 
a"', dt ) 01[1 dt } a1[~J dt 

I"'} } J 

- p(AjxM.i - LMllj + a !l--'tM) ) d~ (llj,M) 

+ (:D-.x _ - P ~)~ (rr~ )- p(7J + atJ;)~ =0. 
IJ M,. a (rr!.M) dt }.M oe dt 

(6.7) 
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Since we have introduced the proper number of un­
determined multipliers in the usual Lagrangian man­
ner, we may treat all 37 time derivatives as if they 
were independent; and since (6. 7) holds for arbitrary 
d(Yj.M)jdt, dtJ.jldt, drrJ jdt, d1f/ jdt, d(iJ.j.M)jdt, d(rrf.M)/dt, 

and de/dt, we have 

31/1 
XM·T-·=P~, 

,z ~J U\Y-iMJ 
J.M 

B~ = - al/l + LMIl
J
'· M + AIl}'-, 

J a Ilj . 

e a 1/1 
0j=---a-;' 

rrj 

XM·A, =-~ +LMI--I'· 
.1 IJ a (p.'. M)' J 

}. 

a 1/1 XM .:1) .. = P --, 
.1 'J a (rr lM) 

}. 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6. 14) 

Note that by virtue of the definition of B!-, without loss 
of generality, we may take } 

(6.15) 

The Lagrangian multipliers may be determined by 
substituting from (6.9) and (6.12), respectively, into 
(6.15) and (3.22), with the results 

A __ 1_ 01/1, L __ 1_ ~-, (6 16) 
--(')2a,l--'k' M-(')2a(' )tJ.k · • 

I--'s tJ.k tJ. s tJ.k,M 
Substituting from (6.16) into (6.9) and (6.12) and 
solving (6.8), (6.12), and (6.13), respectively, for T, A, 
and :D, we find 

a 1/1 
Tij = PYi.M ~' (6.17) 

}.M 

By - - at/; + _1_ (~ 1li.llj + (a~ ) iJ.kllj) ,(6.18) 
all; (1--'~)2 aiJ." a tJ.k.M 'l 

Aj = - Yi.M(a(:~M) - (1l~)2 a(:tM) I--IkiJ.j) , (6.19) 

a 1/1 
:1)ij = PYi.M a (rrl

M
) • 

j. 

(6.20) 

Clearly, t/; cannot be an arbitrary function of the vari­
ables shown in (6.4) because, in order to satisfy the 
principle of material objectivity,26,27 E and, hence, 
X and 1/1 must be scalar invariants under rigid rota­
tions50 of the deformed, polarized and magnetized 
body, and any arbitrary function of the 37 assumed 
variables (12 vectors and a scalar at the point Yk) 
will not be so invariant. However, there is a theorem 
on rotationally invariant functions of several vectors 
due to Cauchy, 51 which says that 1/1 may be an arbit­
rary single-valued function of the scalar products of 
the vectors and the determinants of their components 
taken three at a time. Application of this theorem 
shows that 1/1 is expressible as an arbitrary function 
of 78 scalar products and 194 determinants and e for 
a total of 273 quantities. However, the 273 quantities 
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are not all functionally independent and it can be 
shown, by using procedures similar to those employ­
ed in Sec. 6 of Ref. 4, that the 273 variables are ex­
pressible in terms of the 34 arguments 

CKL ==Yi,KYi,L, NL =Yk,Lllk, Wi = Y k,L rri, (6.21) 

Wi = Yk,Lrr%, KLM == 1l",LYk,M' QLM = Yk,L rr£.M' e. 
Thus, we find that 1/1 is invariant in a rigid rotation if 
it is a Single-valued function of the 34 arguments lis­
ted in (6. 21). Now, as in Ref. 4, we must recognize 
that any single-valued function 1/1 of the 34 arguments 
listed in (6. 21) will not necessarily satisfy (3.26) by 
virtue of (6.19). Equations (3. 26) comprise a system 
of three independent differential equations in the 34 
variables listed in (6. 21), which must be satisfied by 
1/1. ConsequentlY,1/I must reduce to an arbitrary func­
tion of any 34 - 3 = 31 functionally independent solu­
tions of (3. 26), which must be composed of C, N, WI, 
we, K, Q, and e. Clearly, C, N, WI, we, Q, and e consti­
tute 25 such solutions and six additional solutions 
are given by 

(6.22) 

as may be verified by following the procedure em­
ployed in Sec, 6 of Ref, 4. Thus we find that 1/1 may be 
reduced to the form 

(6.23) 

in place of the form shown in (6. 4), and where we have 
taken the liberty of replacing Green's deformation 
tensor CKL' which does not vanish in the undeformed 
state, by the equivalent material strain tensor Exv 
which does vanish in the undeformed state, and is re­
lated to CKL by 

(6.24) 

It is interesting to note that G is invariant in a rigid 
rotation of the entire spin continuum with respect to 
the lattice continuum. Thus it is clear that (3. 26) has 
served to make the exchange energy invariant in a 
rigid rotation of the entire spin system as it is in the 
quantum mechanical description. 52 

From (6.10), (6.11), (6.14), and (6.17)- (6.24), we 
obtain 

~ a 1/1 I 

Tij = PYi,L~,M aE + PYi,L aN Ilj 
LM L 

+ py. al/l rrt + py. ~ rr~ + py. ~ I 
>,L Cl HiI J ',L a Wi J ',L ClQLM rrj,M' 

(6,25) 

(6.26) 

(6,27) 

(6. 28) 

(6.29) 

(6.30) 

a 1/1 
1J=-ae' (6.31) 

where we have introduced the conventions ClI/I/aELM = 
ClI/I/aEML and al/l/acLM = al/-/acML and it is to be as­
sumed that aExL/aELK = 0 and ClCKL/acLK = 0 in dif­
ferentiating ~j and we have found that 

L - _1_ ~ I - _2_ ~ I Il' - 0 (6 32) 
M - (11')2 a' Ilk - ( ')2 ac Ilk,R k -. • 

rs Ilk,M Ils, RM 

At this point it should be noted that since we have con­
constitutive equations for 8/ and 8/, which are com­
posed of the Ef and Ee., respectively, plus other 
terms, the equations of motion (3.42) and (3.46) of 
the electronic and ionic polarizations, respectively, 
may be written in the more convenient forms 

1 r+ (m - e) drrk M 
8j + Ef + C ejk1vkBf! + C ~ ejkl([f Bl 

r e drre dv. + _ __k B¥ _ re _J 
(3C ejkl dt I - dt 

+ rer+ __ __ J + __ __ J_ 
(
m - e) d 2rr! (rep d21f~ 

1 + e dt 2 (3 dt 2 ' 
(6.33) 

+ I + r.M + p e. v nM 
:Dij,i P8j pnT C Jkl 1r'1 

r+(m - 1) d7fk M 

+ -c-- pejkl dt Bl 

+ - --- e.k1P _k Bf1 r+ (»I - e) d1f
e 

C 1 + e J dt 

d
2
rrI (m - e) d

2
rre = m(r+)2 p __ J + rer+ __ p __ J • 

dt 2 1 + e dt2 
(6.34) 

Substituting from (6.26)- (6.28) and (6.30) into (6.25) 
and employing the chain rule of differentiation, we 
obtain 

T - Y -YL _ BL '+ _P_ ClI/I" , 
ij - PYi,L j,M ClE

LM 
i Pllj (1l~)2 Yk.L ClN

L 
Ilkllillj 

- 8{prr.i - 8~ prr~ + :Dk·rr!k' (6.35) > J 'J , ]. 

Taking the axial vector of the anti symmetric part of 
Tij in (6.35), substituting from (6.33) and (6.34) and 
employing (3,23), (3.35), (3.36), (3.45), and (5.15), we 
obtain 

re drr: d 2rrl 
- - pe . . rr.ee.kl - BM + m(r+)2 pe .. rr! __ J 

C(3 m'J' J dt I m'J , dt2 

+ r+r e (m - e)p (e .. rrI d
2

rrl + e .. rr.e d
2
rr/) 

1 + e m'J' dt2 m'J' dt2 

dv (r e)2 d 2rr.e 
+ repemijrr{ d: + -[3- pemijrr{ dt~ , (6.36) 

which is identical with the component form of the vec­
tor form given in (3.48), which was obtained from 
the conservation of angular momentum for the com­
bined continuum. Thus, even in this rather complex 
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situation, the anti symmetric portion of the mechanical 
stress tensor is derivable from a thermodynamic 
state function and has just the value required by the 
conservation of angular momentum. 

This brings us to a consideration of the heat conduc­
ting constitutive equation, which proceeds from the 
entropy inequality (5.19), which indicates that we 
must have 

(6.37) 

since 8 > 0; but since the other constitutive equations 
(6.25)-(6.31) depend on the Yj,L' J.l(, rrl, rrt, J.l!.L' rrlL' and 
8, there is no logical reason to exclude them from this 
one. 53 Thus, because of the chain rule of differentia­
tion, we may write 

(6.38) 

for the general functional dependence of the heat flux 
vector in this case of the interaction of the electro­
magnetic field with a heat conducting, polarizable and 
magnetizable deformable continuum. Now, qi cannot 
be an arbitrary function of the variables shown in 
(6.38) because an arbitrary function of the 40 vari­
ables (12 vectors and four scalars) will not satisfy 
the principle of material objectivity,26, 27 which re­
quires the constitutive equations to be independent of 
the frame of reference of the observer. However, if 
qi is expressed in the form 

qi = hKLK(8'M;Yj .M; fJj; rrf; rrJ; Ilj,M; rrJ.M; 8), (6.39) 

then it can be shown readily, using established 
methods,46,54,55 that the principle of material objec­
tivity is satisfied if LK is a vector invariant in a rigid 
motion. Then the previous application of Cauchy's 
theorem on invariant functions of vectors shows that 
the required invariance of LK is assured if LK is of 
the form 56 

where the functional dependence on the 34 variables 
shown in (6.40) may be arbitrary. However, LK can 
have no term46,55 independent of 8,M and the domi­
nant term must be odd in 8,M because of (5.19). On 
the other hand on account of (6.1), X cannot depend 
on 8,M' Thus, the constitutive equation for the heat 
flux vector in the general case is given by 

(6.41) 

with LK as given in (6.40). 

Equations (6.25)- (6. 31) and (6.41) determine the con­
stitutive equations for our continuum. Thus, all that 
remains in the determination of explicit constitutive 
equations is the selection of specific forms for X and 
L

K
• Once the constitutive equations have been deter­

mined, we have a determinate theory, which by appro­
priate substitution can readily be reduced.to 18 equa­
tions in the 18 dependent variables Y.i' 8, rrJ, rrj, BiM, Elf 
and two of the three Ili. The 18 equations are the 
three each of (3.44), (6.33), (6.34), (4.1), and (4.2), two 
of the three of (3.25) and (5.18). Clearly, the system can 
be reduced further to 16 equations in 16 dependent 
variables with the aid of the electromagnetic poten-
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tials. 57 In order to have a complete field theory, the 
boundary (or jump) conditions at moving surfaces of 
discontinuity have to be adjoined to the aforemention­
ed system of equations. This is done in the next sec­
tion. 

7. THE BOUNDARY CONDITIONS 

In this section we determine the boundary conditions 
which must be adjoined to the system of differential 
equations, as noted at the end of Sec. 6, in order to 
formulate boundary-value problems. These boundary 
(or jump) conditions are determined by applying the 
integral forms of the pertinent field equations to 
appropriate limiting regions surrounding the moving 
(not necessarily material) surface of discontinuity58 
with normal velocity un' and assuming that certain 
variables remain bounded. The pertinent integral 
forms are (3.3), (3.20), (4.6)- (4.8), (4.18), the inte­
gral form of (5.19), which takes the form 

d ( 1. ntqi ( - qi 8 i 
- 'vpTjdV + s - dS = .v --' dV ~ 0, (7.1) 
dt . 8' 82 

and an integral form associated with either (6.34) or 
(preferably) (3.46), neither of which can be used 
directly to find an integral form for the determina­
tion of jump conditions without making some sort of 
physical assumption about the manner in which EL 
becomes unbounded in the vicinity of the surface of 
discontinuity. Different assumptions concerning this 
unboundedness of EL result in different jump condi­
tions on ni~j' The most plausible form of these jump 
conditions can be determined from a consideration of 
the physical model in the limit required at a surface 
of discontinuity, while having recourse to the method 
of derivation of the equations from the model. Speci­
fically, we first observe that the stress equations of 
motion (3.44), which ultimately resulted in the equi­
valent integral form (4.18), were determined by sum­
ming the force equations for the two ionic continua. 
We then note that the equation of motion of the ionic 
polarization was determined by taking the difference 
of the force equations for the two ionic continua ac­
cording to the prescription mr+[(+) - (-)Im]. We 
further observe that the electromagnetic force terms 
in (3.46), which become unbounded across surfaces 
of discontinuity, are of the same form, term by term, 
as those which become unbounded in the sum force 
equation (3.44), and resulted in the Maxwell stress 
tensor and the electromagnetic momentum terms in 
(4.18). In addition, we note that the expression for 
the Maxwell stress tensor for charge, current, and 
free- space regions, Le., when no polarization or mag­
netization is present, is exactly the same59 as in 
(4. 17) in the absence of P and M', and the expression 
for the electromagnetic momentum is exactly the 
same as in (4.19). On account of the foregoing rea­
soning, we postulate that the integral form associated 
with the differential form (3.46), which is valid in the 
vicinity of a surface of discontinuity is 

mr+ Is nib.ijdS + Iv pEFdV 

+ r+ Is ni[TN + (m - 1) vigj ] dS 

= r+d~ I p [(mr+ ~;{ + re (~1 ~ :)~1) 
+(m-l)~JdV, (7.2) 
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where 

TfJ.l= 
tJ 

4~ [41TcpIE~ + (m - 1)(E¥ Ef + .arer) - 41T Btt'Jft'j 

(m - 1) 87T'Jft' I B!d) ] - 2 (EtfEtf + J31>fdt - (m ~ 1) (jij (7.3) 

and 
CP{ = (m - 1) P{ + [em - e)/(1 + e)]Pj, (7.4) 

'Jft; = [em - r m )/(1 + rm)]Mi, (7.5) 

and g is given in (4.19), and ESI is the portion of the 
volumetric interaction force density, exerted between 
the ionic continua, that. remains bounded in the vicinity 
of the surface of discontinuity. Note that this proce­
dure, which is based on the aforementioned physical 
argUment, in essence makes a specific assumption 
about the manner in which EL becomes unbounded in 
the vicinity of a surface of discontinuity. At this point 
it should be noted that similar considerations apply 
in the case of the integral form associated with (6.33) 
or (preferably) (3.42), but since there is no surface 
interaction between neighboring elements of the elec­
tronic charge continuum, the jump condition associa­
ted with this integral form is not needed in the formu­
lation of boundary-value problems. However, appro­
priate consideration of this integral form indicates 
the existence of a surface force of interaction be­
tween the electronic charge continuum and the lattice 
continuum, which can be determined a posteriori. On 
the basis of our earlier physical argument, the rele­
vant integral form is taken to be 

Iv pE~edV + re Is ni (Trf + vti) dS 

=red~ Iv~p[vj+r+C~::)~1 +;e ~7J 
+i~dV, (7.6) 

where ' 

T$~ = ~ (41TCPfE¥ + ! (E¥E¥ + Bt:JB¥ - 41TB¥M!) 
tJ 47T t J (3 t) t) ') 

and 

- 2~ (EtfEtf + BtfB1! - 81TM;B1!) Oi j ), (7.7) 

CPf = (re/{3)Pf + y+ [em - e)/(1 + e)]p[, (7.8) 

and ESe ("t ~) becomes unbounded in the vicinity of 
the surface of discontinuity and g is given in (4.19). 

For all integral forms considered, except (4.6) and 
(4.7), a volumetric region is taken in the usual way,58 
and it is assumed that all pertinent variables remain 
bounded. The jump conditions obtained from the res­
pective integral forms consisting of (3.3), (3.20), 
(4.8), (4.18), (7.1), and (7.2) are 

Un[p] - ni[viP] = 0, 

ni[AikejklPI-'I1 + un[PI-'j/y] - ni[viPI-Lj/y] = 0, 

ni [BY J = 0, ni [Di] = 0, 

ni [Tij + Tff J + u,,[p(Vj + re d7T//dt) +~] 

(7.9) 

(7. 10) 

(7.11) 

-nz[viP(Vj +redy/dt)] = 0, (7.12) 

nJq/8] - un [p1J] + ni [Vi P1J] ~ 0, (7.13) 

(7.14) 

where we have introduced the conventional notation 
[Ci] for C; - C; and 12i denotes the components of the 
unit normal directed from the - to the + side of the 
surface of discontinuity. The jump conditions on H 
and EM, respectively, are determined from (4.6) and 
(4.7) by considering the circulation around a limiting 
open surface intersecting the moving surface of dis­
continuity in the usual way,60 and are given by 

njeijk [Hk] + (un /C)[Di] = 0, 

njeijk[Ett] - (un/C)[Brl = O. 

If the surface of discontinuity is material 

(7.15) 

(7. 16) 

(7.17) 

and (7.9) evaporates and (7.10) and (7.12)- (7.14), res­
pectively, reduce to 

n;[Aikejk1 PI-L11 = 0, 

ni[Tij + T~M + vi~l = 0, 

(7.18) 

(7. 19) 

(7.20) 

ni [~ij + r+ Ti~I + r+(m - 1 )Vi~ 1 = 0, (7.21) 

and in (7.15) and (7. 16),un =nivi • Moreover, if 8 is 
continuous, Le., 

[8] = 0, (7.22) 

across the surface of discontinuity, r is bounded and, 
from (5.19), in place of (7.20), we have 

n;[qd = O. (7.23) 

This latter situation, conSisting of the jump condi­
tions (7.11), (7.15), (7.16), (7.18), (7.19), and (7.21)­
(7.23), is the most common, and if the body does not 
abut another solid body but abuts, say, air instead, the 
boundary conditions are fully defined by the noted 
equations. However, if a body does abut another solid 
body and the full field equations have to be satisfied 
in each region, additional conditions on any two of 
the [I-'i], [y i]' and [7Tl] have to be satisfied at the sur­
face of discontinuity. The condition on [y,] usually is 

[Yi] = 0, (7.24) 

and the conditions on [1-';] and [1TfJ we take as 

[(I-'~r2 eij~jdI-LkJ = 0, [1TfJ = O. (7.25) 

Frequently, the thermal conditions are such that we 
may eliminate either (7.22) or (7.23). Clearly, all 
boundary expressions, which are not prescribed, may 
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be expressed in terms of the same 18 field variables 
as the 18 equations mentioned at the end of Sec. 6 by 
making the appropriate straightforward substitutions. 

Thus, at this point we have obtained the nonlinear dif­
ferential equations and boundary conditions describing 
the behavior of the interaction of the electromagnetic 
field with polarizable and magnetizable, heat conduc­
ting, deformable solid continua. The description con­
sists of the aforementioned 18 equations and 24 boun­
dary conditions, all expressed in terms of the 18 field 
variablesYi' two of the three 11-;, w/' wi, EiM,Bl(-, and e in 
each region. All that remains in the determination of 
explicit equations is the selection of specific forms 
for 1/1 and LK • A sensible polynomial approximation 
for'" might be of the form 

1 C E E + Po m N N POI WI WI 1/1 == 2po KLMN XL MN '2 XKL K L +2 XKL K L 

+ P20 ~LW:Wf + Po~f(LNKWl + po~hNKWf 
+ Po'7cL«f!Wf + ~o O'KLGKL + f3xLMNQKLQMN 

+ i ce 2 + E'RLMELMNK + EiLMELMw;{ + E~L1'.;JELMW~ 
+ 17KLMNEKLQMN + _1_ !hExLe + >'.'llNKe 

Po 

+ AkHif e + X'kWZ: e + Pob;FtJ'!NEK~MNN 

+ PobJiiMNEKLWk W~ + pobkeLMNExLW'it ~ 

+ pobllMNEKLW~W~ + PObY!lM~KLNMW1 

+ PobJFIMNEKLNMW!. + P~I:~MGLMNK 

+ P5fiLMGLM«f! + PY:LMGLMW: + POYKLMNEKLGMN 

+ P~1/IKLMNGKLQMN + higher order terms, (7.26) 

where the material coefficients CKLMN ' XK'L' XkL' xh, 
O'KL' f3KLMN , C, E/liM' EkLM' ERLM> VKL , Al!', Ali:' Ag,b'f{IMN' 
bkhlN,b'ifLMN' and YKLMN are called the elastic, mag­
netic anisotropy, reciprocal ionic and electronic sus­
ceptibilities, exchange, ionic polarization gradient, 
thermal, piezomagnetic, ionic and electronic piezo­
electric, thermoelastic, pyromagnetic, ionic and elec­
tronic pyroelectriC, magnetostrictive, ionic and elec­
tronic electrostrictive and exchangestrictive con­
stants, respectively, and the remainder of the coupling 
coefficients we do not bother to name. Actually, all 
coefficients in (7.26) may be regarded as functions of 
the absolute temperature e (and perhaps even the 
fields through NL , Wk, Wfc in some instances). For 
linear heat conduction the form for LK would be 

(7.27) 

where the linear thermal conductivity tensor JC may 
be a function of 8, ELM,NV "iI, and WI. 

As noted earlier, we can determine an energetic jump 
condition from the integral form (5.24), which condi­
tion is not needed in the determination of the solu­
tion of a boundary-value problem, but can be useful 
for obtaining information when the entire solution is 
not available. This jump condition is obtained by 
applying (5.24) to the aforementioned volumetric 
region surrounding the (not necessarily material) 
surface of discontinuity and assuming that p, Vj' E, IJk' 
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wI, w: ,B/:, and Ef/ remain bounded, with the result 

1) bkVk ,+ ~k ~f -AjkP ~k - qj - C~) ejkZErRt 

+ vjPkEr + Vj UF ] + un[T + pE + UF} 

- nj[v/T + pE + UF)] == 0, (7.2B) 

where T and UF are given in (5.3) and (5.23), res­
pectively, and E may be found from (5.14), (6. 2), and 
(6.23). If the surface is material, we have (7.17), and 
(72.8) reduces to 

nj [7jkVk + !Djk d7TVdt - ~kpdiJ.kldt - qj 

- (C/47T)ejklErRz + VjPkEr + VjUFJ == O. (7.29) 

8. AN ALTERNATE DESCRIPTION FOR THE 
USUAL CASE 

Frequently the material resonance&-ionic polariza­
tion, electronic polarization and magnetic spin-may 
be left out of account, as may the distinction between 
ionic and electronic polarizations, the exchange inter­
action and polarization gradient effects. In such sim­
plified circumstances, the model used in Sec. 2 is 
needlessly complex and a simpler, but similar, model 
conSisting of a Single electronic charge and spin con­
tinuum coupled to a single lattice continuum is per­
fectlyadequate. When this more common situation is 
conSidered, the saturation condition (3.24) is aban­
doned, and in place of (3.25) we have 

(B. 1) 

In addition, in place of the equations of motion of the 
ionic and electronic polarizations (3.42) and (3.46), 
we have the equation for the single electronic charge 
continuum 

creEe== - creEM- ~ VXBM __ t ~; XBM 

-POVEM_-i"X (poVBM)_M'oBMv, (8.2) 

in which ae is the charge density of the electronic 
charge continuum, ae Ee is the force exerted by the 
lattice continuum on the electronic charge continuum 
at the position of the charge continuum and 

71' =: Pip. (8.3) 

Since the electronic inertia is negligible in the case 
treated here, the stress equations of motion take the 
form 

v P d7l' V·T + poVEM + - X (poVBM) + - - X BM 
C C dt 

+ M 'oBMn _ dv 
v -Pdf' (B. 4) 

in place of the form shown in (3.44), and the conser­
vation of mass is still given by (3.3). At this point it 
should be noted that Eqs. (8.1) and (8.2), although 
satisfied, are not actually needed in this formulation. 
The electromagnetic equations [Eqs. (4.1)-(4.17) and 
(4.19)] remain valid. In place of the integral form in 
(4.18), we have 

Is n° (7 + TEM + vg) dS = it Iv(pv + g)dV. (8.5) 
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In place of (5.8) the equation of the conservation of 
energy takes the somewhat reduced form 

~ Iv P (t v·v + E)dV = Is (t·v - n·q)dS + Iv bdV, 
. ~.~ 

where b is still given by (5.7). In place of (5.16), the 
first law of thermodynamics takes the simpler form 

dE dBM,. dTf. 
- T I + E' M' (8 7) P dt - ijVj,i - PI\ dt P, dt - qi,i' • 

The second law of thermodynamics for the present 
case takes the form 

dE dB{'1 dTf. dTJ 
P dt - TijVj,i + PIl~ dt - pEiM df := pe df' (8.8) 

in place of (5. 17). The dissipation equation and the 
entropy inequality are still given by (5.18) and (5.19), 
respectively. In place of (5.24) the integral form of 
the energy equation without source terms in the pre­
sent case takes the form 

d~ Iv [pet VkVk + E) + UF]dV = Is nj [Tjk Vk - % 
- (C/4if}ejkzEI/Hz + vJPkEkM + vPFJdS, (8.9) 

where UF is given in (5.23). 

In this rather simplified case, the most convenient 
form of the constitutive equations is considerably 
different than the forms used earlier in the treatment 
of the more complicated Situation, which appear in 
Sec.6. In view of (5.19) and (4.2),61 it turns out to 
be particularly convenient in the present situation to 
define the thermodynamic function F by the Legendre 
transformation 

(8. 10) 

The substitution of the material time derivative of 
(8.10) into (8.8) yields 

dF d dB¥ 
Pdf = TijxM•i dt (Yj,M) - Pf.J.; d; 

dE'(f de 
- PTfi ----;It - PTJ dt ' 

(8. 11) 

where we have substituted for Vj,i as in the beginning 
of Sec. 6. Motivated by (8.11), we assume 

F = F(y. M ;B!'!; E!M; e). J. t t 
(8.12) 

From (8.11) and (8.12), in the usual way, we obtain 
the relations 

of 
Tij =P:Yi,M O(Y.M)' 

J, 

I of 
l1-i = - off.' , 

of of 
Tfi=-oE~' TJ=-ae' , (8.13) 

As with 1/1 in Sec. 6, F must be invariant in a rigid 
rotation and, from Cauchy's theorem, we find that F 
can be an arbitrary function of 15 scalar products 
and 10 determinants as well as e, for a total of 26 
quantities. However, the 26 quantities are not all 
functionally independent, and it can be shown that the 
26 variables are expressible in terms of 13 argu­
ments consisting of 

ZK = Y i,KIif , (8. 14) 

and the EXL defined in (6. 24). Thus we find that F 
may be reduced to the form 

(8. 15) 

in place of the form shown in (8.12). From (8.13)­
(8.15) and (6.24), we obtain 

of of BM of E'M 
Tij = PYi,LYj.M ~ + PYi,L az j + PYi,L an j' 

1M L W"L (8.16) 

I of of of 
J.Li=-Yi,L oZ' Tfi =-Yi,Lan' TJ=-ae' 

L • L (8.17) 
where we have introduced the usual conventions con­
cerning F and EiL' At this point it is easy to show, 
with the aid of (8.16) and (8.17), that the conserva­
tion of angular momentum is satisfied. The heat con­
duction constitutive equation is still given by (6.41), 
but now 

(8. 18) 

in place of the form given in (6.40). Once specific 
forms for F and LK are chosen, the constitutive equa­
tions may be determined from (8.16), (8.17), and 
(6.41). Thus we now have a determinate theory, 
which, by appropriate substitution, can readily be re­
duced to ten equations in the ten dependent variables 
Yj'Bfl,Efl, and e. The ten equations are the three 
each of (8.4), (4.1), and (4.2) and (5.18). 

The jump conditions at moving nonmaterial surfaces 
of discontinuity required to complete this descrip­
tion are (7.9), (7.11), 

ni[Tij + T5M
J + un[pvj +~] - ni[viPvj ] = 0, (8.19) 

in place of (7.12), (7.13), (7.15), and (7.16). If the 
surface of discontinuity is material, (7.17) holds and 
the boundary conditions are (7.11), (7.15), (7.16), 
(7.19) and, if (J is continuous also, (7.22) and (7.23). 
If in addition material surfaces are attached, (7.24) 
holds as well. Clearly, these boundary conditions can 
be expressed in terms of the same ten field variables 
as the differential equations. 

It should be noted that since no material resonances 
or other complex material behavior are included in 
this description and, fundamentally, the model con­
sists of charge and Circulating current densities, it 
should not be difficult to find the equivalent Lorentz 
invariant form of this description. It should also be 
noted that other convenient descriptions incorpora­
ting anyone material resonance, while ignoring the 
others, may readily be obtained by making the appro­
priate Legendre transformation in the state function 
equation. 
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APPENDIX 

Equation (3.6) may be written in the component form 

(AI) 

in which the magnitude of the steady circulating cur­
rent density i'~ has been omitted and where 
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(A2) 

From Stokes theorem for tensor point functions, 62 
we obtain 

(A3) 

where S' is the area enclosed by the closed curve C' . 
Since 
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We present a quantum mechanical treatment of thermal transport in a one-dimensional isotopically substituted 
harmonic lattice. This work is an extension of a classical mechanical treatment. We find that the difference 
between the quantum and classical expressions for the thermal conductivity of a random chain vanishes in 
the limit N -. 00, where N is the number of isotopes. Thus, as in the classical treatment, the thermal conduc­
tivity diverges as N1I2. For a periodic diatomic lattice, we derive explicit formulas for the heat current as 
a function of temperature. At very low temperatures, this quantum mechanical current exhibits Kapitsa 
behavior. 

1. INTRODUCTION 

In a recent paper, 1 referred to as RGI, we examined 
heat transport in a model crystal. Using classical 
statistical mechaniCS, we derived exact expressions 
for the steady-state heat current passing through a 
finite isotopically disordered harmonic lattice, whose 
end atoms were harmonically bound to semi-infinite­
perfect harmonic chains at different temperatures. 
From the definition of the coefficient of thermal con­
ductivity in terms of the heat current and tempera­
ture gradient, we found the conductivity to be a func­
tion of the length of the disordered segment. The 
numerical calculations for 25 < N < 600, where N is 
the number of defects, revealed that the conductivity 
is proportional to IN within statistical uncertainty. 

In this paper we present a quantum mechanical ex­
tension of our earlier treatment of thermal trans­
port. Much of the discussion closely parallels that 
given in RGI to which the reader is referred for 
details. As far as the anomalous behavior of the 
thermal conductivity is concerned, there is no sub­
stantial difference between the classical and quantum 
mechanical results for randomly disordered lattices. 
We present the quantum version for completeness 
and to demonstrate the connection between our non­
equilibrium treatment and the method of Kub02 and 
Green3 used by Allen and Ford. 4 

We emphasize that the thermal conductivity which 
we calculate is for a finite isotopically disordered 
chain of atoms with a particular coupling to the 
thermal bath on either side of it. The baths consist 
of semi-infinite perfect lattices and the connection 
is via a harmonic force between the extreme atoms of 
the system and bath. Other boundary conditions or 
different baths give different results for the thermal 
conductivity.5 While real experimental systems pos­
sess intrinsic thermal conductivities whose values 
are independent of the nature of heat baths or sur­
faces used, these one-dimensional harmonic crystals 
possess transport coefficients which depend on such 
details. 

2. REVIEW AND SUMMARY OF CLASSICAL TREAT­
MENT 

Consider a finite chain of atoms bound to nearest 
neighbors by harmonic forces. The particles are 
labeled by an index r, - !n :5 r:5 ::rr. Except for N 
isotopic defects of mass M, at lattice sites r = A

J
, 

j = 1,2, ... ,N, all particles have mass m. The order­
ing of the indices is such that ° = Al < A2 < ... < 
A} < ... < A N and the length of the disordered region 
L ;: AN - Al is much smaller than the length of the 
entire chain .e = 2::rr + 1. Ultimately we allow ::rr -> cc 
in order to provide a thermal bath of infinite extent 

379 

on either side of the finite disordered region. The 
nearest-neighbor force constant f is the same every­
where in the crystal. 

The formal solution to the quantum mechanical equa­
tions of motion for the displacement and momentum 
operators is equivalent to the classical solution. 6 

X(T) ::::: M-l/2W-1 / 2 sin(Wl/2T)M-l/2P(0) 

+ M-l/2 coS(Wl/2T)Ml/2X(0), 

P(T) = Ml/2 coS(Wl/2T)M-l/2p(0) 

- M1I2Wl/2 sin(Wl/2T)Ml/2X(0), (1) 

where all matrices are (2::rr + 1) x (281 + 1). M is a 
diagonal matrix whose rrth element is the mass of 
the rth atom, and 'Iv ::::: M-l/2 VM-l/2. 

The matrix V is the symmetrical potential energy 
matrix: 

The end conditions of the 2::rr + 1 atom chain are that 
the atoms at r = - ::rr and r ::::: + ::rr are harmonically 
bound to fixed positions (Le., the hypothetical atom 
at r = - ::rr - 1 or + ::rr + 1 is fixed in its equilibrium 
position). Thus 

Vr,_~=f[2oy.~ - 0r-l,- 1, 
Vr ~ = f[2or,~ - 0r+1 ~]. 

(3) 

The time variable T is dimensionless; with respect 
to the real time t, T == 2(j/m)1/2t, where f is the 
nearest neighbor force constant. In this model we 
considered an ensemble of initial conditions in which 
all atoms of index - R < r :5 + ::rr are held fixed with 
zero velocity, and in which the initial velocities and 
displacements of the atoms of index - ::rr :5 r :5 - R 
are specified by a canonical distribution at tempera­
ture T.l These initial conditions are specified by 
the phase-space distribution function 

'W ([X; (O)J ,[ X~ (O)J) ::::: Z exp ( - 2~T X~ (O)MhXh (0) 

- 2!TxnO)VhXh(0») rca+1 &[x(r,O)]&[x(r,O)]. (4) 

In this expression Z is the normaliZing constant. 

Here we have partitioned X(O) and X(O) into 

X(O) = [X~(O)J. X(O) = [X~(O)J, (5) 

where the components of X h (0) and X h (0) are the 
atomic displacements and velOCities, respectively, of 
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particles of index - ~ ~ r ~ - R. The (~ + 1 - R) x 
(~ + 1 - R) matrix Mh is diagonal with elements 
equal to the mass m. The matrix V h is defined by the 
following set of equations: 

[Vh]y.s == 21[(\.5 - iO y.s+1 -~6y.s-l]' 
r,s;"-R,-:1L, 

[Vh]y.-m == ~f[OY.-m- io y.-m+1 ], 

Similar definitions cover V d' V c' M d' M c. 

This non equilibrium temperature distribution gives 
rise to a net flow of heat from the "hot" region to 

(6) 

the colder one. The average value of the heat current 
past atom r at any time T > 0 is 

(IN (r, T» = tm(i(r, T}[x(r - 1,1) - x(r, T)]), (7) 

where the classical phase space average implies, as 
usual, 

(A(X,X;t)) == 1 dx- m dx_ m+1··· 

x dXm di_ m di_ m +1" ·di m 'W[X,X]A(X, X; t). (8) 

In RGI we showed that as T ~ <Xl, ~ ~ <Xl, and 'JL/T ~ <Xl, 

the heat current (IN(r, T» becomes independent of r 
and T: 

lim (IN(r, r» == J N == ~~ 101 
dw'l'J(w), (9) 

r ,~-+O(.I 

where 'l'~(w) is the square of the transmitted ampli­
tude for a wave of frequency (L'. The explicit expres­
sion for 'l'J «.0.,) is given in RGI and in two earlier 
papers. 7 ,8 

In RGI we found that, because 'l'J«.o.') is negligible for 
frequencies much larger than w ~ N-l/2, the heat 
current is 

I
N 
~ N-l/2. (10) 

Hence, the thermal conductivity K N' defined via 

is 
(12) 

In fact, an adequate approximation for K N was devel­
oped in RGI by a Gaussian approximation for 'l'JV2(w). 
The result is 

'" k (I+ QC\ 1/2 / 
KN == 4QC 17(1 _ C)} Nl 2 

where Q = (M - m)/m and C is the fractional con­
centration of defects in the segment of length L = 
N/C. 

3. QUANTUM THEORY OF HEAT FLOW 

(13) 

In this quantum mechanical modification to the results 
of the previous section, we wish to retain the basic 
model: an initial thermal nonequilibrium condition 
which approaches a steady state as T ;-7 oc. This is 
accomplished simply by replacing 'W(X(O) , X(O)] of 
Eq. (4) by an initial density matrix operator p(O) and 
by replacing the averaging prescription in Eq. (8) by 
a trace over a complete set of states. 

J.Math. Phys., Vol. 13,No. 3,March 1972 

Consider the three, uncoupled chains of atoms in 
Fig.l. The left-most and right-most circular chains 
have periodic boundary conditions. The linear chain 
of length 2R - 1 > AN - Al has fixed boundary con­
ditions, although as we shall see, the exact nature of 
the boundaries for this chain are not important. 

It is easy to see that these three chains may be as­
sembled into the chain defined in the previous sec­
tion by breaking and forming certain bonds. 

The Hamiltonians for each chain are 

-R _ fj2 a2 l-R 

X h = ~ 2m ax2 +21 ~ (xn - x n _1)2, 
n--m n n=-m 

m _ fj2 a2 1 m 
Xc == I; 2m ax2 + 21 ~ (x n - x n+1)2, 

n=R n n=R 
R-l -1f,2 a2 R-l 

Xd = I; 2M -a 2 + Y I; (xn - x n _1)2 
n=-R+l n xn n=-R+2 

(14) 

Because of cyclic boundary conditions in the "h" and 
"c" chains, the atom of index - ~ - 1 and'JL + 1 
are, respectively, - R and R in the summations above. 
We use cyclic boundary conditions in order to facili­
tate the normal coordinate analysis. The chain whose 
thermal transport properties we are investigating 
has a Hamiltonian 

m _ fj2 a2 
JC-I;-­

- n =-m 2Mn ax~ 
(15) 

We now define the initial density matrix operator to 
be 

_ exp(- {3hJCh) exp(- {3dJed) exp(- {3cJCc) 
p(O) = Tr[ exp(- (3hJCh) exp(- {3dJCd) exp(- {3c JC c)] , 

(16) 

where {3j == (kT)-l and Tj is the initial temperature 
of the jth chain for j == h, d, c. 

Because the eigenstates of p(O) are not the eigen­
states of JC, the average value of any dynamic vari­
able A changes with time: 

(A(t» == Tr[p(O)e i3Ct / 1I A(O)e- iXt / Ir ). (17) 

The variable in which we are interested is the heat 
current operator 

IN(r,T) =Hp(r,T}[x(r -l,T) -x(r,T)] 

+ [x(r-1,T)-x(r,T)]p(r,T)}. (18) 

(J~:' .:. t)" 
-R-2 R+ 2 

-"O'm' .. ~ ~ .. ~m- ... ~ 
-R+l A, Ai AN R-l 

'FIG. 1. Uncoupled harmonic chains used to define the initial 
conditions. 
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The trace is taken most conveniently in the basis set 
defined by the normal modes of the three independent 
chains h, d, and c. 

In matrix notation, 

Je h = ~PIMhPh + ~XIVhXh' 
Je c = ~P~McPc + ~X~VcXc' 
Jed = ~PaMdPd + ~XaVdXd' 

(19) 

where the elements of Xc are the displacements of 
all atoms of index + R :s r :s :n. and Pc contains the 
conjugate momentum operators to those displace­
ments. Similar definitions obtain for Xd and P d and 
Xh and Ph' Obviously, 

[

Xh(O)] 
X(O) = Xd(O) , P(O) = P d{O) • [Ph{O~ 

Xe(O) Pe(O) 

Normal coordinates for each of the three initially 
unconnected chains are 

~J = SJM V2Xi' 

(p = STM-1/2p J' = h,c, or d, 
) J J J' 

whence 

JC - l.(PT(9 + 161 T0261 
j - 2 j j 2 -<-j j -<'j' 

In Eqs. (21) and (22), 

0 2 == SI:M-:-1/2V.M-:-1/2S. == Sr:wS. 
J J J J J J J J J' 

(20) 

(21) 

(22) 

J = h,c,or d. (23) 

The SJ matrix is found from the requirement that the 
0; matrices be diagonal with elements w~ which are 
solutions to the secular equation 

det[M-:-1/2VM-:1/2 - w2 ] = 0, j = h,c,or d. 
) )} J 

Quantum mechanical averages now are6 

«(Pj(9J,) = o}.],(}1fOj coth(~nJ3jQJ)]' 

~J~J,> = OJ.j,[~nQ;l coth{~i3})J)]' 
(!tJ~~) = oj,j,rti1i lj], 
<~~J,) = 0M,[-1m llj]' j = h, c, or d. (24) 

The calculation of the average of J N (r, T) is outlined 
in the Appendix. The final T -j 00, :n -j 00 steady state 
heat current is given by Eq. (A32) of the Appendix: 

1 11 (1iw nw) 
I N = 271 0 dwi"'~(w) \(ehwlkTh -1) - (etzw/kTc -1) • 

(25) 

The result is independent of Td , the initial tempera­
ture of the finite defect chain. 

We also see that, in general, the heat flux is not pro­
portional to the temperature difference T h - Tc = oT. 
However, if aT is small, we may expand Eq. (25) in a 
power series in oT: 

oT 1 Jl2w2ehwikT 
J N = 271kT2 fo dw (e 11 w/kT _ 1)2 i"'&(w) 

+ 0[(oT)2] + "', (26) 

where T = Th • 

Thus, by Eq. (11), we identify the thermal conductivity 
from the linear term 

L 1 ehwlkT 
KN = 2rrkT2 fo dwli2w2 (ehwlkT _1)2r~(W). (27) 

This is in exact agreement with the results of Allen 
and Ford,4 who use the Kubo linear response forma­
lism. As 1i -j 0, we retrieve the classical result ob­
tained earlier in RGI: 

Lk 1 
limEN = -2 J dwi"'G(w). 
1f- 0 rr 0 

(28) 

It is noteworthy that our model, which places the en­
tire chain in an extreme non equilibrium situation 
initially and which follows the average heat flow as a 
function of time until a steady state obtains, gives 
exactly the same result as the Kubo formalism in 
which an infinitesimal temperature gradient is im­
posed initially. 

Is there any quantum effect on K N for an isotopically 
disordered lattice of N defects at random atomic 
sites within a length L? Unfortunately, no. In RGI we 
demonstrated that i"'n(w) is essentially zero for 
w > N-l/2. Hence quantum effects which are distinct 
from classical ones will be seen only if liw/kT » 1, 
for these values of w which contribute to the integral, 
or, kT « liw < nN-I/2. Thus the temperature must 
be small indeed for a quantum contribution to K N to 
be sizeable if N is macroscopically large. 

4. PERIODIC ISOTOPIC SUBSTITUTION 

In the cases when i"'n(w) is nonvanishing over an 
appreciable frequency range the fore-going conclu­
sions are not applicable. One particular situation 
which is easy to treat is the case in which the spacing 
between successive defects is a constant, Le., a 
periodically substituted lattice. H we denote the inter­
defect separation by a, the transmission coefficient is 
given by Rubin,7 Appendix B; 

i"'n(w) = IDNI-2, 
where (29) 

DN == [UN(x) - (1 - i~) exp(- iKa)UN_l(X)] exp(- iNKa), 

(30) 

and where UN(x) = sin(N + l)1//sin1/ is a Tchebycheff 
polynomial,1/ == COS-IX and 

~ = Qw(1 - w2)-1/2, 

X = ~(1 + i~) exp(iKa) + ~(1 - i~) exp(- iKa). (31) 

One finds that 

i"'2(w) = (1 + ~2 s~n2(N1/)_\ -1 (32) 
N sm2 1/ J 

As long as Ixl< 1,1] is real and rn(w) is an oscil­
lating function of w. When I X I> 1,1] becomes imagi­
nary, and r J (w) is an exponentially decreaSing func­
tion of N. 

A rearrangement of Eq. (31) yields 

sin2 1/ = 1 - (1 + ~2) cos 2 (Ka + cp), (33) 

where cp = tan-l~. The transmission cut-off fre­
quencies {w) at which I X 1= 1 are determined from 
the condition 
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FIG. 2. Heat current J(multiplied by 21T/k6T) as a function of 
temperature. Here Wo = 2U/m)1/2 is unity in the units employed 
in this paper. 
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FIG.3. Low temperature behavior of 21TJ /koT for choices of 
Q/a. 
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or 

or 

sin2 71 = 0, 

(1 + 6. 2 ) COS 2 (Ka + cf;) = 1, 

cos(Ka) - 6. sin(lw) = ± 1. 

Equation (34) provides the frequencies at which 
transmission regions are separated by stopping 
bands, for N sufficiently large. 

In the limit N -) 00, we may replace Th(w) by a 
smoothed function T~(w): 

(34) 

T2(w) == j 0 , T/ imaginary 
00 1(1 + j6. 2/sin271)-1, 71 real, (35) 

for all frequencies except w = 0 at which T~(w) = 1. 

This Simplification to Eq. (32) occurs because, for 
real 71, sin2 (N71) is rapidly OSCillatory about ~ over 
any small frequency range [w, w + OW J. As N -) 00, 

the interval 6w becomes infinitesimal. The smoothed 
transmission coefficient of Eq. (35) is useful in 
numerical integrations. 

Because the smoothed coefficient for a periodically 
substituted lattice becomes independent of N as N -) 00, 

the thermal conductivity defined by Eq. (11) diverges 
linearly with N. This feature has been noted for per­
fect harmonic lattices also,l,9 

The heat current is 

aT (1 ettwlkT 
J = 21TkT2 J o dwT,;,(w)fi2w2 (eflwlkT --1)2 . (36) 

In the high temperature limit for which kT » fiw, the 
heat current is proportional to oT and independent 
of T itself: 

J=k6T (1 dw~P(w) 
21T J 0 00' 

(37) 

However, in the low temperature region for which 
kT ;S tiw, a distinct quantum effect emerges, and J 
is a function of T and of oT. At very low tempera­
tures, the temperature dependent terms in the inte­
grand of Eq. (36) decay rapidly as a function of w. As 
a consequence, the transmission coefficient is essen­
tially constant over that frequency range for which 
the integrand contributes to the integral. 

Hence, at sufficiently small T, 
oT 00 ti2w2ehwikT 

J = 21TkT2 1'2 fo dw (elrw/kT - 1)2. (38) 

where 

1'2 = !~~+ T,;,(w) = (1 + 8(~Q~ak7a») -1. (39) 

We note that 1'2 is a function of Q/a which implies 
that the low temperature limiting behavior of the 
heat current for periodic crystals of the same ratio 
Q / a is identical. 

For sufficiently low temperatures (kT « Ii), the inte­
gral in Eq. (38) differs negligibly from the heat capa­
city per atom of the heat reservior harmonic chains: 

2 r 1 fi2w2ehwikT 
C(T) == 1i Jo dw (e-hw/kT _ 1)2 (1 - w2)-l/2 

or (40) 
21.1 fi2w2etlwikT 

CeT) "'" 1T 0 dw (e-hwlkT _ 1)2' if kT «fiw. 

Thus we write 
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J = 4~~2<f2C(T). (41) 

The exact T-dependence of the current as T ~ 0 is 

J = [2"'2;(2) k2] ToT, (42) 

where ~(n) is the Riemann Zeta Function of argument 
n. This proportionality of J to ToT is typical of 
Kapitsa resistance in one dimension. In three dimen­
sions, one observes a T 30T10 behavior which is re­
lated to the difference in the density of states near 
w = 0 in one and three dimensions. 

In Figs. (2) and (3), the heat current vs. temperature 
for choices of Q and a is displayed. Both the classi­
cal kT » nw and Kapitsa kT « nw are clearly seen. 

5. DISCU~SION 

We have extended our earlier! classical treatment 
of heat transport across an isotopically substituted 
linear crystal to the quantum domain. In the limit 
of an infinitesimal temperature gradient oT, our 
result reduces to the Kubo-Green result worke(' out 
by Allen and Ford. 4 From a knowledge of the trans­
mission coefficient T~(w) as a function of frequency, 
we are able to deduce the following results. 

(a) In an isotopically disordered one-dimensional 
lattice connected to harmonic heat baths, the thermal 
conductivity is divergent as N 1/2, where N is the 
number of isotopic impurities. This general result 
is true in the quantum and classical domains. 

(b) In a periodic isotopically substituted lattice, the 
low temperature heat current is given by Eqs. (3S) 
and (39). All crystals with the same ratio of Q/ a 
have exactly the same low temperature current. For 
large values of N, the thermal conductivity is pro­
portional to N. 

APPENDIX 

According to Eq. (IS), the average heat current past 
atom r at time T is 

(IN(r,T)) = ~<p(r,T)[x(r -l,T) -x(r,T)] 

+ [x(r -l,T) -x(r,T)]p(r,T». (AI) 

For the finite 2;R + 1 particle chain, we use the 
matrix notation introduced previously; 

X(r,T) == fl;[M-1izW-1/2 sin(W l /2T)M-l/2P(0) 

+ M-1/2 cos(Wl/2T)Ml/2X(0)], 

P(r,T) == fl;'[M 1/2 coS(Wl/2r)M-1/2p(0) 

- Ml/2Wl/2 sin(Wl/2T)Ml/2X(O)]. 

The 2:rL + 1 component column vector I!.r has only 
one nonzero element, the rth one which is unity. 
Using the normal coordinates of the initially un' 
coupled lattices, Eqs. (20) and (21), we define 

X(O) = M -1 /2 5(0) .ct(0) , 

P(O) = Ml/25(O)(P(0), 

where 

(A2) 

(A3) 

(M) 

With these definitions, the general average value of 
interest in the heat current expressions, Eq. (AI), may 
be written as 

i(P(r, r)x(r', r) + x(r', r)P(r, r» == ~r .. )(r) 

== t fl;[M 1/2 cos(W1l2r) 5(0) «J>(O) (J>(0)T)5(0)T 

x sin(wl/2r)w- 1/2M -1/2 - M 1/2W 1/2 sineW 1/2r) 

X S(O)(!t(O)!t(O)T)S(ol cos(W1/2T)M-1/2]A,..,. (A5) 

In Eq. (A5) the quantum mechanical averages of pro­
ducts of normal coordinates and conjugate momenta 
are obtained by using Eqs. (M) and (24). The cross 

terms containing (!t(O)(J>(O)t) and «P(O).ct(O)T) cancel 
exactly. 

The matrices, M, W, and 5(0) are the same for both 
classical and quantum mechanics. Only the averages 
(!t(0) .ct(O)T) and «J>(O)(p(O)T) appearing in Eq. (A5) are 
different in quantum and classical calculations. 

We write out explicitly the result of matrix multipli­
cation, 

where the index q denotes normal modes of the ini­
tially uncoupled lattices and 

Xr'q(r) == [M-1/2W-1/2 sin(W 1izr)5(0)]y'q, (A7a) 

(A7b) 

and the dot over Xrq(r) or P rq (r) denotes a time 
derivative. From Eqs. (A2) , we observe that Xy'q(r) 
as defined in Eq. CA7a) is the displacement of the 
r'th atom at time r when the initial lattice conditions 
are defined by 

!t(0) = 0, (J>(O) == A • 
q (AS) 

Thus Xr,q(r) is the classical displacement of the r'th 
atom, while Prq(r) is the classical momentum of the 
rth atom at time r when the initial lattice conditions 
are given in Eq. (AS). The identification of these 
functions at classical displacements and momenta 
allows contact with our earlier1 claSSical treatment 
of the disordered harmonic chain. 

The quantum mechanics enters Eq. (A5) from 

«P(O)(p(ol)qq, == tnwq cothCtnw/kT)6q.q" 

<.ct(O)~(O)T) == tnw -1 coth(-2inw /kT)6 
qql q q J q. q" 

(A9) 

where the normal mode frequency of index q is w , k is Boltzmann's constant, and the temperature T/ is 
Th,Td,or Tc,depending on the chain of Fig.1 for 
which q is a normal mode index. 
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We are interested in the long time behavior of the 
heat flow when transients introduced by the initial 
nonequilibrium temperature profile have decayed. 
Because the defect bearing region of length L if 
finite in extent, for T sufficiently large that 

L« T« ~, (A10) 

the contributions to the heat current J N arising 
from the initial temperature Td of the defect region 
are much smaller than the contributions to J N from 
the two large heat baths at temperatures Th and Tc' 
In the limit as ~ -700, T -7 00 and ~/T -7 00, the con­
tributions from the defect region's initial tempera­
ture are vanishingly small. If we anticipate the 
limits !JL -7 00 and T -7 00 and neglect contributions 
to I N or gj y, y,(T) from the defect modes, we find 
gjy,YI(T) to be a sum of two contributions, one from 
the lattice section initially at temperature Thl the 
other from the lattice section initially at Tc: 

gjy,y,(T) 

== 6 [Pyq (T)A;'q (T)(a\<ppqq + Pyq(T)Xy,q(T)(~h~Pqq] 
qEh 

+ L) [Pyq (T)X .. Iq (T) (<Pc <P!>qq + p .. q(T)Xr,q(T)(~c~~)qq] 
qEc 

== a9:~/(T) + gjS;~,(T). (All) 

Next we evaluate gj~L(T) explicitly and appeal to 
simple physical symmetry to deduce gj~~/(T). In 
this calculation we require an explicit form for S h' 

For mathematical convenience, we have chosen the 
left-most chain to be initially characterized by 
cyclic boundary conditions. In general we are free 
to specify any arbitrary boundary conditions, but we 
know that as ~ -7 00 and as T -7 00, the contributions 
of the boundaries to gj ..... ,(T) vanish, provided rand r' 
are finite. 

For the cyclic boundary conditions cited previously 
and depicted in Fig. 1 , the initial velocity (classical) 
of the nth particle, - ~ ::s n Si - R, is given in terms 
of the classical momenta [<Ph]q byll 

x(n,O) == (m;,) 1/2;;: [<Ps•1 cos e;~n1 

+ <P s.2 sin (2~~n)J, Jr.' =' ~ - R + 1. (A12) 

Here the normal mode index q == (s,j), where j == 1,2. 

Therefore, if q == (s, 1) and <Ph = I1q, then 

x(n, 0) == (m2~) 1/2 cos (2~~1 ' 

and if q == (s,2) when <Ph == I1q' 

then 

x(n,O) == (m~'11/2 sin e~~) 
The normal mode frequencies are 

w == sin(1T s jJ1.'), j == 1,2. q 

(A13) 

(A14) 

(A15) 

From Eqs. (A3), (A7), (A13), and (A14) we find that 
the displacementXy,q(T) is 

X . (T) = -- B ~-1/2 sin(W l/2T)] ( 
2 J 1/2 -R 

Y'(S}) My~' n=-:n Tn 
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x 'cos(2~sn) i' 
) . (27Tsn\ 
( sm Cj[!J . 

(A16) 

where the upper of the two trigonometric functions 
in curly brackets { ... } is appropriate to j = 1, the 
lower to j = 2. 

From the definition of gj~~ (T) and Eq. (A16), 

:n'/2 (~n(uV 2\ 
gj .... ,(T) = i SY;I liws coth 2kTh

s
}\'Jrf} 

-R -R 

X n~:nn'P-:n [cose~sn) cose~') 
+ sin (2~sn) sin (2~n,)J {tiN-I /2 sin(W1I2T)]y,n 

x [cos(WI/2T)]yn l - w;2[cos(WI/2T)]",n 

x [W1/2 sin(Vv'1/2T ]yn'} . (Al7) 

At this point we immediately proceed to the limit 
as Jr. -7 00. In this limit the discrete argument q == 
21T sj~1 becomes continuous in the interval [0, 1T] as 
s ranges over [1, ~Jr.']. That is to say, the sum over 
s becomes an integral over q: 

. 2 ~'/2 (21T~ 1 11 

11m J1.' 6 f ¥ = - fo dqf(q). 
:n,-> 00 s = I 7T 

(Al8) 

Hence, for ~ -7 00, and T finite, 
-R -R 

3~>'(T) = 8; !off dq1iwq coth(~1iw/kTh) n~oon/~oo 
X {[W-I/2 sin(wI/2T)]yln[cos(wI/2T)]Tnl 

- w~2[cos(w1I2T)]Yln[wI/2 sin(wI/2T)]yn'} 

x [cos(qn) cos(qn') + sin(qn) sin(qn ' )]. (Al9) 

Again we make a physical interpretation of the matrix 
elements of Eq. (A19) and use results derived pre­
viously.1 

From Eq. (A2) we note that 
-R 

X1rig(r', T) = 6 [W-1 /2 sin(Vv'1/2T) ]y,n trig(qn), (A20) 
n =-00 

where trig(qn) is either sin(qn) or cos(qn),is the dis­
placement of the rth atom at time T when the initial, 
classical conditions of the lattice are 

X(n,O) == 0, all n, 

X(n,O) = trig(qn), n ::s - R , (A2l) 

X(n,O) == 0, n >-R. 

when r' > AN this displacement,Xtrig(r'T) is 1 

1 f e PT 

X1rig (r'r) == 2ni L dp p(l + p2)1/2DN(P) 
-R 

X 6 E2(r'-n} (p) trig(qn), (A22) 
n =-00 

where L is a contour in the complex p-plane to the 
right of all Singularities of the p -dependent integrand, 

E(p) =' [p + (1 + p2)1/2]-1, 

DN(p) = det (Sr.s + (1 }t2) 1/2 E2IAr- A
s I) , 
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(A23) 

When trig = cos, 

1 f ePTE2(r'+R) 
Xcos(r'T) = 21Ti L dp p(l + p2)1!2DN(p) 

x Icos(qR) ( 1 + 1 ) 
L 2 1 - E 2 e iq 1 - E 2e- i q 

- sin(qR) (1 1 \] 
2i \1- E 2 e i q - 1 - E2 e -iqj , 

(A24) 

and when trig = sin, 

- 1f ePTE2(rt+R) 
Xsin(r',T) = 21Ti L dp p(l +p2)1/2DN(P) 

x [sin(qR) ( 1 + 1 \ 
2 1 - E 2e i q 1 - E2e -i qj 

+ cos (qR ) ( 1. _ 1 . )~ 
2i 1 - E2 e lq 1 - E 2e- l q 'J (A25) 

The integrand in either case has branch points at 
p = ± i, and simple poles at 

p = 0, p = ± i sin-1 (%q) = ± iW q • (A26) 

If the two branch points are connected by a cut which 
lies to the left of the imaginary p-axis, we may make 
the following arguments for large T: The contour L 
is deformed to encircle the branch cut and isolated 
poles on the imaginary p-axis. As T increases with­
out bound, the contribution to the integral from the 
branch cut contour vanishes because ePT falls ex­
ponentially to zero if Re{p} < O. Thus only the simple 
isolated poles on the imaginary p-axis determine 
Xtng(r', T) as T ~ co. 

After the evaluation of the residues at these poles, 
the displacements are 

1 1 1'N (Wq) 
Xcos(r'T) ="2 cos(qR) +"2 -w-- sin[wq T - qr' -I/tN(q)], 

q (A27) 
1 1'N(W ) 

Xsin (r', T) =-"2 sin(qR) + % --q- COS[wqT-qr' -1VN(q)], 
Wq 

where we have used1 

(A28) 
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Here 'l'N(w ) is the transmitted amplitude of a wave 
of unit am~litude and frequency Wq incident on the 
array of N defects. The phase shift is 1VN(q). 

Finally,from the use of Eq. (A27) , (A19), and (A20), 
we derive 

lim .g~~L(T) 
T"'OO 1 1f 7fl(w) 

= - J dqlfw ~ sin[q(r - r') 
161T 0 q Wq 

1 

x coth "2Wq (A29) 
kTh ' 

which is independent of T and R and only depends on 
r and r' through their difference. 

Since 

lim (IN (r, T» = lim [.g~h~_1 (T) - 8$?HT)], (A30) 
T-+OO T ...... OO 

The asymptotic contribution to the heat current past 
atom r > AN is 

1 1f (%lfWq) : 
<IN(r)) = 161T fo dqlf'l'R(wq) coth kTh S.!lq 

= 2~ fol dw'l'R(w)lfw (ehw/k:h - 1 + %) . (A31) 

Since <J N (r» is independent of r, the heat current is 
constant everywhere in vicinity of defect region; i.e ., 
a steady state has developed. Obviously the current 
arising from the region initially at temperature Tc 
is the same as Eq. (A31), except for a change of sign 
and replacement of T h by Tc' Thus the steady state 
heat current across an N-defect lattice connected to 
two semi-infinite harmonic lattice heat baths at 
temperatures Th and Tc is 

1 1 (1 1) 
IN = 21T fo dwlfw'l'J(w) \ehW!kTh - 1 - ehw/kTc - 1 

(A32) 

With the interpretation of 

<neW, T» == (e hw/kT - 1)-1 

as the mean number of phonons of frequency W 

present at temperature T, the physical meaning of 
the integrand in Eq. (A32) is clear. 
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We. con.,sider ~rrotational p~,rfect fluid solutions of the Einstein equations with an equation of state p = yp. We 
define veloclty-dom~n~ted smgularItles of these solutions, a notion previously introduced for dust models. 
We demonstrate e,xphcItly that umquely and invariantly defined inner metric tensor, extrinsic curvature tensor 
and scalar ban?-hme fU,nchon can be assigned to these singularities, as in the dust case, We study the effects ' 
of ~ hme-varymg equahon of state and viscosities on these singularities, and show by order-of-magnitude 
est,lmates that they do not change the ~tructure of the singularity provided y > 0, Some known exact perfect 
flUId solutIOns, both homogereous and mhomogeneous, are listed as examples. 

1. INTRODUCTION 

In a previous paper,l we introduced "velocity-dom­
inated" singularities of irrotational dust solutions of 
the Einstein equations. However, it is possible that 
primordial matter at the very beginning of the big 
bang was more complicated than dust, although recent 
investigations of the microscopic properties of had­
ronic matter2,3 seem to indicate, that dust might be a 
good approximation to the state of matter up to a 
microsecond after the explosion. Moreover, if inhomo­
geneous singularities are to play any role in the 
construction of realistic models for quasars or 
galactic centers, it would be very naive and artificial 
to use dust as the matter source. The study of the 
effects of realistic matter on the structure and pro­
perties of the cosmological singularity (or singulari­
ties) is thus of interest. 

The purpose of this paper is to generalize the notion 
of velocity-dominated singularity to solutions of 
Einstein equations with irrotational perfect fluid 
sources having a barotropic equation of state p = yp. 
It turns out that in this case the Einstein equations 
can also be explicitly integrated to give the form of 
the metric near the singularity. Similarly, one can 
identify some functions of integration as the metric, 
extrinsic curvature tensor, and bang-time functions 
of the three-dimensional singularity manifold. The 
results show that the inclusion of pressure does not 
affect the behavior of Kasner-like singularities, in 
agreement with the findings of Lifshitz and Khalatni­
kov. 4 However, pressure does playa role in the 
structure of the Friedman-like singularities, a pheno­
menon well known in the homogeneous Friedman 
models. Moreover, it is interesting to note in the 
Kasner-like case that our analysis, which is done in 
comoving nongeodesic frames, shows the same kind 
of singularity structures as those found by Lifshitz 
and Khalatnikov, who use geodesic normal co­
ordinates.4 

What about more complicated states of matter? In 
Sec. III of this paper, we try to estimate the effects 
of viscosity, and a time-varying equation of state. 
We tentatively conclude that as far as the velocity­
dominated approximation goes, they do not affect the 
structure of the singularity in the sense that if we 
ignore them in the first order, then the correction 
terms will only show up in higher orders. Of course, 
this kind of argument does not prove anything, and 
the question will only be settled when examples of 
exact analytic or numerical solutions are found. 

In the final section, we present some example of 
exact solutions with perfect fluid sources. Inhomo­
geneous exact models are very hard to find, and 
except for the case of p = p, we are only able to show 
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the existence of velOCity-dominated singularities in 
the plane and spherical symmetric models through 
some ad hoc approximation scheme. 

2. THE STRUCTURE OF THE SINGULARITY 

The Einstein equations with perfect fluid sources are 

!.LV = 0 ..• 3, a, b = 1 '" 3, 

sgn(- + + +), (1) 
where 

Tt = pu~uv + Ph~, h~ == Ij,~ + u~uv' 

h~u~ = 0, u~u~ = - 1. 

Throughout this section we assume a barotropic equa­
tion of state for the matter p = yp, where y is a con­
stant and p > O. y = 0 reduces to the dust case. y = t 
gives radiation or ultrarelativistic matter whereas 
y = 1 corresponds to stiff matter (e.g., the Brans­
Dicke bosons). Although the solutions of the velocity­
dominated equations do not depend on specific values 
of y from other considerations (e. g., the existence of 
the singularity, 5 causality, etc.), it is reasonable to 
restrict y to the range -~ :S Y ::::: 1. We also assume 
that the fluid is irrotational: w == hcxh Bu[ 1 = 0 
Then in "comoving normal" co~rdin~t~s,t~e metric 
can be written as6 

(2) 

and Ull = e-00l) is the unit vector field tangent to the 
x a = const lines. The remaining allowed coordinate 
transformations are 

i' = t'(t). (3) 

We shall denote ordinary spatial derivative by a 
comma (, ), covariant derivative with respect to g v 

by a semi colon (; ), covariant derivative with res~ 
pect to the spatial metric gab (xc, t = const) by a 
stroke ([), and geometrical quantities of the t = const 
hypersurfaces by a superscript 3. 

The "field velocity" 

(4) 

is related to the second fundamental form ng of the 
t = const surfaces by nb

a = e -OK:. Kba can be split into 
traceless and isotropic parts: 

Kb
Q 

= L~ + tlj~K, K '= K: = iWna), 

a == (Det [gab [)1/2 =? L: = 0; 
(5) 

and let L2 == L~L: 2: O. Using metric (2) and the con­
tracted Bianchi Identities 7;~v = 0 one obtains 
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(i) the conservation equation u~ ~~v = 0 

?> atP = - (p + p)K, 

(ii) the equations of motion ha~ Ti: = 0 

~ a,a = - P,al(p + P)· 

(6) 

(7) 

Applying the equation of state P = yp, we obtain the first 
integral of (7) 

a = - [1'1(1' + 1)]lnp + f(t), 

For convenience we set f(t) equal to zero by rescal­
ing t and write from now on 

a = - [1'1(1' + 1)]lnp, (8) 

The freedom of arbitrary coordination transforma­
tions is restricted to 

tf = t + const. (3 f) 

Equation (6) also has a first integral 

(9) 

Let us now look at the Einstein equations, Using 
standard techniques (e.g., Eisenhart7) we compute 

a 3 a ,a + ,a -2o(~ + K ~ )L a 
Cb = Cb + a a,b alb - e Ut - Uta b 

+ e- 20o:r%(a t + tK - 0ta)K + tL2 

_e 2o(a,Ca +a,C)]=_Po a 
,c Ie b' 

(10) 

(11) 

(12) 

Adding (10) to (11) multiplied by YO~ we obtain what 
we shall call the "evolution equations" free of matter 
terms: 

3 C a 13R a ,a ,a -2o(~ + K " )La b -"2 YOb + a a,b + alb - e Ut - Uta b 

+ e-2°o~H[Ot + t(1 + y)K - ap]K + t(1 - y)L2 

- e 2o (a'C a ,c + ai~)} = 0, (13a) 

in which 
(13b) 

is obtained by substituting (8) into (6). Equation (13b) 
has the integral 

(13c) 

Eq lations (13) define a closed system for the unknown 
functions gab and a when combined with Eq. (4). As is 
already shown in Ref. 1, they can in principle be con­
verted into a very complicated, covariant, but not very 
useful functional equation for gab' P can then be com­
puted from (11). 

Now from the following generalization of Raychaud­
huri's equations to include pressure gradients 

e = - a~va~v - te 2 - t(p + 3P) -[I/(p + P)] 

x (02p + p +2pe) + [1/(p + P)2][P2 + p,~(p + p),~], 

where 

one checks that if along a pa~ticular matter line the 
pressure gradients (spatial) are small and p + 3p ;:: 0, 
so that the right-hand side remains negative, then 
iJ < 0 always implies e ---7 00 for some t = ot, so that a 
physical singularity (at which curvature invariants 
blow up) exists at ot. Whether this actually happens 
to all matter lines in exact solutions depends on the 
specific initial data. But suppose it does, so that 
t = ot(xc) defines a three-dimensional singularity 
manifold, then we are interested in characterizing the 
structure and properties of the metric near such a 
singularity. We call ot(xc) the bang time and assume 
that it is Coo, and we want to construct a differentiable 
manifold out of t = ot(xc), which we will call the Singu­
larity. Following the velocity-dominated approach for 
the dust models, the essential idea here is to drop the 
spatial curvature and pressure gradient terms in 
Eqs, (13), and use the solution as a first approxima­
tion to gab near the singularity. We first generalize 
the definition of velocity-dominated singularity intro­
duced in the previous paper. 

Let gab with corresponding Kba, & and bang-time func­
tion of == ot be an exact perfect fluid solution. Sup­
pose there is another gab which in some neighborhood 
of ot satisfies (a) gab = gba' sgn(gatJ = + 3; (b) gab 
obeys (4) and 

[at + (1 - y)K]L~ = obaH[at + t(l- y)K]K 

+ t(1 - y)L 2}; (14) 

(c) there exists some component, say W, of gab such 
that for fixed XC and t ---7 ot, 

(Kb
a - K!:>(K;K:d --70, {j - a ---70, 

(!Jab - gab)W- 1 ---70; (15) 

Then we call gab "velocity-dominated" and call gab its 
first approximation, In order that a solution of (4) 
and (14) be a first approximation, the consistency 
conditions 

(16a) 

(16b) 

together with p > 0 in (11), and Eq. (12) must be 
satisfied. These will place restrictions on gab' The 
above definition is invariant under the transforma­
tions (3). 

The task now is to integrate Eqs. (4) and (14) for gab' 
K;, and a, and check consistency conditions (12) and 
(16). If everything is all right, then putting the solu­
tions back into (13) will generate a second-order 
approximation, and so on. p and p can be computed 
order by order from Eq. (11). 
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Setting the traceless and isotropic parts of Eq. (14) 
to zero separately gives 

[at + (1 - y)K]L~ = 0, 

[at + ~(1- y)K]K = - ~(1 - y)L2. 

We consider two different cases. 

Case A: y;>< 1. The integral of (17a) is 

L ~ = oM:(xC)a y-1, 

(17a) 

(17b) 

(18) 

where oMba is some arbitrary symmetric traceless 
3-tensor density. Substituting solution (18) into (17b) 
we obtain a second-order equation for a: 

(l2a 1 + y (aa)2 3 a-- - -- - + '4 (1 - Y)oM2 a 2Y = 0, 
(lt2 2 at 

(19) 

which has the general solution 

where oa, ot, ot' are arbitrary functions of integra­
tion related to oM. Putting (20) back into (18), (13c), 
(5), (4) and integrating give 

K b = oK b X - ---a a( C) (1 1) + 2 
(t - Ot) (t - ot') 3(1 - y) 

1 
X 0: 

t - ot' 

o Kb 1 0 1 
oK bOa = 'OK 0 = --, 

(1 - y)2 1 - r 

gob = Ogac(X
C

) exp2 ~K~[ln(t - Ot) -In(t - ot')] (21) 

+ 2 Obc In(t - ot')), 
3(1 - r) 

u = ou(xc) + [yl(l - y)] In[(I- ot)(1 - ot')]. 

Following the terminology of our last paper, we call 
this the "Heckmann-Schucking-like" 1 solution. When 
ot ~ 0 / ', we obtain the Friedman-like 1 solution 

)
4/[30-y)] a 2 a 1 

gab = o!Jab(t - ot , Kb = 3(1- y) °b (t - ot)' 

_ 2r _ 2/(1-y) (22) 
a - OU + (1 _ .y) In(! - ot), a - oa(t - ot) , 

Also we get back the Kasner-like 1 solution by letting 

and then taking the limit of' ~ - 00 (after dropping the 
prime): 

gab = ogac exp(2 oK~ In(t - ot)], 

U = OU + [rI(l - r)] In(t - ot), 
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Note that OU is not arbitrary but is determined by (8) 
and (11) when one computes the first nonvanishing 
coefficient of p, whose order should be consistent 
with the exact relation (9). If we now express the 
proper time T of a particular matter line, say XC = 
const, in term!:! of the coordinate time t, then we get, 
for the Kasner-like case (everything being evaluated 
at XC = const) 

T - OT ~ (t - O/)I/(1-y) 

so that Eqs. (23) become 

a ~ (T - OT), K: ~ OK~(T - oTr(l- y) 

~n: = OnbO(T - oTrl and 

x gob ~ oIJoc exp[ 20n~ In (T, - 0 T)), 

where 

on~ == oK~(l - y) 

is such that 
nO ,-,b a 

O"bO'oo = ona = 1. 

(24) 

(23') 

Thus, the local behavior is the same as in the dust 
model, independent of the value of y. We can there­
fore say, that pressure does not affect the structure 
of Kasner-like singularities. On the other hand, for 
the Friedman-like case, we have 

(25) 

and Eqs. (22) become 

a ~ (7 _ OT)2/(1~y), K O ~ 2 60(T _ Tr(I-Y)/(I~Y) 
b 3(1 - r) b 0 

(22') 
a 2 O( )-1 

=3>nb = 3(1 + y)Ob 7- 0 T and 

gob ~ (T - OT)4/[3(I+ y)]. 

Thus, we see that in terms of the local proper time of 
the comoving observers, positive pressure (y > 0) has 
the effect of lowering the power of the time depend­
ence of the metric of the Friedman-like solutions. 

Both o!Jab and oK: transform as 3-tensors under (3a) 
and are uniquely defined for t fixed as in (8). From 
their definitions, we see that they can be simultane­
ously diagonalized at anyone point of the singularity 
by a local real coordinate transformation. 

Case B: r = 1. In this case we simply combine 
(17a) and (17b) and write 

(26) 

The solution is 

K: = OK;(xC), gab = oIJac (XC) exp2 {OK~ t} , 

a = Oa eXPoKt, a = OU + oK!, (27) 

oK == oK~, oa == (det I Ogab I) 1/2. 

For definiteness we assume oK(xc) > 0 in the follow­
ing, 80 that a singularity exists for all world lines at 
t = - 00. To see the structure of the singularity more 
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clearly, we redefine the time coordinate as t = e t or 
t == Int. Then in the new coordinate system we have 

ds 2 == - e20 (x .f)dP + g- (x T)dx a dx b 
ab , , 

a == 00" + (oK - 1) InT, O! = oO!ToK
, (28) 

gab == ogae exp(20K; lnf). 

The singularity is now shifted to T == 0 and the allow­
ed coordinate transformations remain the same as 
in (3). On the other hand, if we again express every­
thing in terms of the proper time T of a particular 
comoving observer, then at, say XC == const, we have 

(29) 

and solutions (28) become 

O! ~ (T - OT), gab ~ ~ac exp[20U~ln(T - OT)], (28') 

where 

oU~ == oK;/oK 

is such that 

Equations (28') differ from (23'), in that the condi­
tion on~ oU~. == 1 is relaxed. We call thi~ type of 
singularity "semi-Kasner-like". With t fixed as in 
(28), ogab and OKb

a are again uniquely defined and 
have similar properties (except for the relaxation 
of the constraints on OKb

Q
) as in the previous cases. 

We now identify them as the metric and extrinsic 
curvature tensor of the three-dimensional singu­
larity manifold for all cases. In the semi-Kasner­
like case, however, the bang-time function is amazing­
ly constrained to be a constant, so that the price of 
relaxing the constraints on oK: here is to lose the 
two arbitrary functions ot and 01', at least in the first 
order. 

The task of checking the consistency conditions and 
estimating correction terms is very similar to the 
dust case. We omit the details in the following and 
discuss briefly the main results. We consider only 
the Friedman-like case and the Kasner-like case. 
(The Heckmann-Schucking-like case is completely 
equivalent to the Kasner-like case near anyone of 
its singularities.) The semi-Kasner-like case, being 
pathological, remains to be studied in more detail. 
For simplicity, we analyze everything in an open 
region on which one of the solutions (22) and (23) 
holds. 

From the Bianchi identities C~J. == 0, we know that 
if a metric satisfies Eqs. (4), dO), and (11) together 
with P == ",(p, then 

(30) 

where r:P2 are functions of integration. Moreover, if 
(12) is also satisfied, then 

(9') 

In the Friedman-like case, using solutions (22), Eq. 
~12) becomes 

CO == [(t - t)-2 t L 4 _ 81' )+ (t _ t)-1 
a 0 0 ,a \" 3(1 _I') 3(1 _ ')')2 0 

X (4 0")] e- 20o(t _ t)-4Y/(1- y) (31) 
3(1 _ 1') 0 ,a 0 , 

while (11) gives p to the lowest order: 

p == CfJ == [~(1 - ,),)2l(1+Y)I<1-Y) (t - oi)-2(1+ Y)/(1-y). (32) 

Thus (32) and (8) give 00" a constant, so that the 
second term in Eq. (31) vanishes identically. Then 
from (12) and (30), we see that we have to set the first 
term in (31) equal to zero. Hence we need 

(33) 

Assuming (33) one obtains for the 3-Ricci-tensor 

3Rba = gRba(xc)(t - Ot)-4/3(I-y), (34a) 

where gR; is the Ricci tensor formed with ~ab' 
Similarly, the pre ssure gradient terms give 

(34b) 

where from now on we denote covariant derivative 
with respect to Ogab by a double stroke II . Equations 
(34) satisfy conditions (16) iff I' > - t, which is satis­
fied by all known or conceivable states of matter.2 
Assuming this and putting (34) back into (13) gives 
second-order approximations which can be checked 
to be consistent with (15). Since now both 00" and ot 
are constants, the matter lines are geodesics to the 
lowest order and therefore our Friedman-like case 
is completely equivalent to the isotropic case of 
Lif shitz and Khalatnikov. 4 

The Kasner-like case is more involved and one has to 
resort to the use of Cartan frames and stretched 
metrics developed in our last paper.1lf T~(XC) are 
the unit eigenvectors of oKb

Q orthonormal with res­
pect to ~ab(A, B == 1,2,3 not subject to summation 
convention), we can write 

a ",PA a 
OKb == ?:' 1 _ I' TA TAb' (35) 

where 

etc. Conditions (21) now require 

(36) 

For convenience, we arrange ~ according to the con­
vention 1 ~ 11. ~ Pz ~ 0 ~ P::J ~ - t· Substituting solu­
tions (23) into the left-hand side of (12) gives a lead­
ing term identically equal to zero, and the first non­
vanishing term is 

TaCO= (t _ t)-2 Y/(I- y ){ K a Tb 
B Q 0 0 blla B 

+ [(1- PB)/(I- Y)]OO:bT~}(t - Ot)-l e-2 oo, (37) 

having the same order as given by (30). However, in 
this case we cannot simply set the coefficients equal 
to zero because higher-order corrections [e.g., 
~ In(t - ot)l to the solutions (23) will in general con-
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tribute to this term. But in any case oG2 = 0 are 
three constraint conditions on the metric of the 
singularity. On the other hand, p to the first order is 
zero from Eq. (11), so the contribution to p must 
come from higher-order terms, the coefficients of 
which are in general functions of spatial variables. 
Thus, 00 of the solutions (23) will in general be spati­
ally dependent and the matter lines are nut geodesics 
even in the lowest order. In this sense, our analysis 
differs from that of Lifshitz and Khalatnikov4 who 
use normal geodesic congruence as the time lines, 
although the results agree essentially. 

The conditions (16) can be checked using (35), etc. and 
the formulas derived in the Appendix of our last 
paper. l For ot constant and P == (Pv P2' P3) '" (1,0,0), 
one again obtains the hypersurface orthogonal con­
dition 4 for T 3a: 

(38) 

For ot '" const, many other conditions arise as in the 
dust models, e.g., 

(39) 

plus new conditions from (16b), so that ot '" const 
does not give any extra arbitrary function of three 
variables. For P = (1,0,0) even for ot = const a 
variety of conditions results. For example, (16b) 
requires 

(40) 

The meaning and interpretations of these numerous 
conditions for all cases are being investigated. In 
any case, once all consistency conditions are satis­
fied, then 3 Roa and O,aa,b + 0t~ put back into (13) will 
generate the second-order approximation. 

What is the degree of generality of these solutions? 

To look into this, let us first recall the number count­
ing of the essential arbitrary functions for the generic 
case; To get any general irrotational perfect fluid 
solution with a specified equation of state p = P(p), 
one has to give gab and Koa on one space like hyper­
surface t = const subject to the three constraints (12). 
The initial data for 0 are not arbitrary but are related 
through the integrated Bianchi identity (8) to the 
initial value of p, which in turn is constrained by Eq. 
(ll). Let us also assume that the requirement p > 0 
does not affect the counting. Then one has 12 func­
tions of three variables subject to three constraints. 
Taking into account the three coordinate transforma­
tions (3), one ends up with six essential functions in 
general. On the other hand, the Heckmann-Schiicking­
like solutions with ot = const are generated by ~;'b' 
oKoa, and ot' subject to oG~ = 0 in (12). This leaves 
four essential fUnctions of three variables. The other 
cases are not more general. We thus conclude that 
the general irrotational perfect fluid solution is not 
velocity-dominated. In particular, the very interest­
ing mixmaster-like solutions 9 do not seem to fall 
into our category. 

3. OTHER STATES OF MATTER 

Because of the limited knowledge one has at present 
about the properties of matter near a big bang, it 
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would be more realistic to consider other plausible 
states of matter different from that of an irrotational 
perfect fluid with the simple equation of state p = yp. 
In the following, we try to consider the effects of (i) 
a time-varying equation of state p = y(t)p, and (ii) 
viscosity (shear and bulk), again by the method of 
estimating the order of magnitudes of the correction 
terms. Models with rotations, being more involved, 
merit an independent investigation. 

A. Time-Varying Equation of State 

IT the recent theories of hadronic matier2 ,3 are 
correct, then the ratio of pressure to matter energy 
denSity is essentially zero near the big bang, but 
gradually increases as the universe expands until it 
reaches the ultrarelativistic value of p = ~p in the 
lepton era. 2 One way to take into account this property 
of matter is to consider it as being described by a 
time-varying equation of state. (We ignore the spatial 
variation of y for simplicity.) A reasonable theoretical 
model to incorporate this is to consider I' as depend­
ent on the spatial volume element a through some 
power law 

01' const, n any real no. > 0, (41) 

so that y --70 as a --70 at the singularity. Repeating 
the analysis of Sec. I, but dropping y compared to 1, 
whenever y + 1 appears, since we are only interested 
in the region a --70, we obtain from (6)-(9), 

ato == at (y Ina) (42) 

instead of (13b), while (13a) remains valid. 

Putting (42) into (14), the traceless part can be inte­
grated. The solution is again Eq. (18) with y = O. The 
trace of (14) now becomes, after plugging in solution 
(18) for Lb

G
, 

a-l a2a _ ~a-2 (oa) 2 _ a-l(aa) (OY) Ina 
al 2 at at at! 

+ ~ oM2a-2 = 0, (43) 

which differs from the corresponding equation for 
dust by the additional third term. Suppose a has the 
first-order solution (22) or (23) (with I' == 0) near 
the singularity; then all other terms in (43) are 
~ (t - Ot)-2, whereas the third term is ~ (t - ot)-2+n 
In(t - ot) or (t - ot)- 2+2 n In(t - ot), which is of a 
little higher order as long as n > O. ReplaCing (41) 
by other elementary functions (e.g., (lna)-l, e- a-\ 

etc.) would not make the 0(1' term any more dominant. 
Thus, it is at least consistent to ignore it in the first 
order. In this sense, we say that a time-varying I' 
with I' --70 as a --70 has no essential effect on the 
structure of velocity-dominated singularities. 

B. Viscosity 

Let us first consider shear viscosity. Tt in Eq. (1) 
is changed to 

(44) 
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where the viscosity coefficient A is assumed to be 
constant and at == hilCl.h:u(O'.:S) - -}eht is the shear 
tensor. 

Again going to comoving normal coordinates (2) we 
obtain 

The conservation equation is now 

alP + (p + P)K - AL2e- o = 0, 

and the equations of motion h'4l T:~v = 0 become 

(p + p)a,a + P,Q - Ae -oL~llc = 0, 

while the evolution equations (14) give 

(45) 

(46) 

(47) 

(at + K - ata + AeO)Lb
Q = 0, (48a) 

(at + ~(1 + ')I)K - op)K + % (1 - 1')£2 = O. (48b) 

Equations (46) and (47) cannot be integrated because 
of the extra viscosity terms. We now assume that 
they are of a higher order and drop them in the first 
approximation and then check consistency. Then 
Eqs. (6)-(9), (13b) and (13c) remain valid. Equations 
(13b) and (13c) put back into (48a) give the first 
integral for L~: 

L~ = OMba(xC)a y-1 exp (_Ae Oo 
{: a Y(t')dt} . (49) 

We see that y = 0 gives the well-known exponential 
decay of the shear 10 ,11 due to viscosity. Since we 
are prim'arily interested in the region near a = 0, 
f/ is to be chosen as the bang time for convenience 
(this can always be done due to the remaining freedom 
in redefining oM~). From (49) we see that as t -7ot, 
exp( ) -7 1 and Lg goes to solution (18), so that the 
first-order solutions are again (22) or (23). (We 
ignore the Heckmann-Schucking-like case because 
here we are only interested in the region near one of 
the singularities.) With solutions (22), L 2e- a in Eq. 
(46) is ~ (t - oi)-2/(1-y), obviously of higher order 
than the other terms [~ (t - ot)- (3+ yl/(1-yl). 

With solutions (23), L 2e- o is ~ (t - Ot)(-2+yJ/(1-yl, which 
is of order higher than the other terms 
[~ (t - Ot)-2/(1-yJ) provided y> O. In Eq. (47) with 
solutions (23) the leading viscosity term is 
~ (t - Ot)(y-2)/(1-yl, while the other terms are 
~ (t - Ot)-2f(l-y); with solutions (22), Eq. (47) is identi­
cally satisfied to lowest order. Thus, dropping the 
viscosity terms in the lowest order is at least self­
consistent as long as y > O. 

Next let us consider bulk viscosity. Tt can be written 
as 

(50) 

where Tj the bulk viscosity coefficient is assumed 
constant. The conservation equation and equations of 
motions are (in comoving normal coordinates): 

(p + p)a,a + Pc. = Tje- °I\a' 

(51) 

(52) 

Since these equations cannot be integrated, we again 
resort to estimates by first dropping the viscosity 
terms. Then Eqs. (6)-(9), (13b), and (13c) remain 
valid. The evolution equations (14) give in this case 

(53a) 

Solving (53a) as before and putting the solution into 
(53b) one obtains 

a-l~ _ (1 + 1') a-2(aa)2 + %(1 _ Y)oM2a2y-2 
at 2 at 

_ ~1)eoOaY-l (~~) = O. (54) 

Here we again see that the viscosity term will be of 
higher order, if we assume a first-order solution for 
a using only the other three terms. In fact, the last 
term will be of higher order as long as a --'> 0 accord­
ing to some power law, and I' 2: 0, because then the 
first three terms are ~ (t - Ot)-2, whereas this term 
is ~ (t - Ot)-l +n, where n 2: O. Dropping this last 
term in (54) we again obtain the solutions (22) and 
(23). With solutions (22), e- aK2 in (51) is 
~ (t - Ot)-2/U-Y), while the other terms are 
~ (t - Ot)-(3+ y)/(1- yl. Equation (52) is identically 
satisfied to lowest order since ot,a = 0 for this case. 
With solutions (23), e- oK2 is ~ (t - Ot)(-2+ yl/(1- yl, 

while the other terms in (51) are ~ (t - ot)-2/(1-yl. 
Also e-oK,Q is ~ (t - ot)(-2+yl/(1-y) compared to the 

(t - Ot)-2/U-yJ dependence of the other terms in (52). 
Therefore we again obtain the condition y > 0 for the 
viscosity terms to be negligible in all equations in 
the limit a -7 0, 

To summarize, we have shown that viscosity effects 
are negligible near the singularity provided P > 0, 
in the sense that if we drop them in the first order, 
then the solutions are at least self-consistent. 

Finally, one observes trivially that the inclusion of 
the cosmological term (A = const) in the field equa­
tions does not change any of our previous analysis. 

4. EXAMPLES OF PERFECT FLUID MODELS 

In the following, we list some of the exact solutions of 
the Einstein equations we were able to find, simply to 
demonstrate the existence of velocitv-dominated sin­
gularities. No exhaustive classification is intended. 

For homogeneous models, the well-known Tolman 12 

and Bianchi Jl3 radiation models (I' = 1) and their 
generalizations to other values of I' are trivially 
velocity-dominated, their Singularities being the pro­
totypes of Friedman-like and Heckmann-Schucking­
like singularities, respectively. The radiation (y = ~) 
models of Kastowski 14 have both a Friedman-like 
(t~, ~) and a Kasner-like (~,~, -~) Singularity. 
All Ellis-MacCallum models with 3-spaces of con­
stant curvature 15 (Le., 3Rab 's are isotropic) are 
expliCitly velocity-dominated. On the other hand, the 
Collin's special type II axis-symmetric models16 

are not velocity-dominated. A structure can be 
assigned to them, but then P = [(1 - 1')/2(1 + 1'), 
(3 + 1')/4(1 + 1'), (3 + 1')/4(1 + 1')], In general, the 
asymptotic behaviors of the Bianchi models are more 
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easily seen using the potential method of Misner 17 
and Jacobs- Hughston, 18 since the "potentials" V({3) 
are essentially the 3-curvatures. A solution will be 
velocity-dominated near the singularity n -; C() if the 
initial conditions are such that V({3) becomes negli­
gible compared to the "kinetic energy" (d{31 dn) terms 
in the limit n -; C(). In this sense, types VIII and IX 
seem not to be velocity-dominated because of the 
recurrent dominance of the 3-curvature terms as the 
system point gets scattered off by the rising potential 
walls, whereas all other types seem at least to admit 
subclasses of solutions which are velocity-dominated. 
At this point, we like to clarify a little the termino­
logy used by other groups15.18. The "cigar" singu­
larity corresponds to our case P == (PI' P2 > 0 > P3 ). 

The "pancake" singularity corresponds to our case 
P :::: (1,0, 0). The "point" singularity corresponds to 
our Friedman-like case if y ~ 1. Finally, a velocity­
dominated "barrel" singularity can only occur when 
y == 1. 

As far as we know, no exact analytiC solutions of 
inhomogeneous models with perfect fluid (y ~ 0) 
sources have been found except for the special case 
p :::: p.19 However, in both the plane and spherical 
symmetric 20 models, one can use ad hoc approxima­
tion methods to study the behavior of the metric near 
the singularity. The metric for these models can be 
written in the form 

p, p functions of x3 , t only, (55) 

where (a) in the spherical case, 

dl2 == dn 2, (Xl, x2, x3) :::: (6, <p, r), 

(b) in the plane case, 

d12 :::: dx2 + d)'2, (xl, x2, x 3) == (x,)" z), 
and 

a:::: y(lnlJl + 21ncp), (56) 

follows from the Bianchi identities after fixing the x3 

and t coordinates. Suppose we assume a first-order 
solution of the form 

cP ~ Ocp(x3)[t - ot(x3)j2/[3(1-Y)], 

l/I ~ ol/l(x3)[t - ot(x3)p/[3(1-r)]. 

(57a) 

(57b) 

Then putting these into the field equations, one checks 
that all lowest-order terms cancel out identically 
and the correction terms are of higher order 
[lCP ~ (t - ot)(6 r +4 )/3 (l-r); llJl ~ (t - ot)(6r+1 )/3(1-y)] 

as long as y > - t. Thus one sees that the exact 
solution will admit Singularity of the type (~, ~,- t). 
Similarly one checks that a first-order Friedman­
like solution 

cP ~ acp(x3)(t - Ot)2/[3(1-y)], 

l/I "" olJl(x3)(t - ot)2/[3(1-YJ] 

(58a) 

(58b) 

is also consistent with the field equations provided 
the conditions at 3 = 0 and y > - t are satisfied. 
Moreover, it turns out that the general solution con­
tains the same number of essential arbitrary func-
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tions (two of them) as the first apprOximation, so that 
the data on the singularity uniquely generate the full 
metric. 

For the special case p = p(y = 1), exact solutions with 
plane symmetry can be obtained and are being studied 
in detail by Tabensky.19 At least one class of exact 
solutions turns out to be velocity-dominated. The 
form of the metric near the singularity is 

eO "" K(Z)t 3K(z)(4+l/2K(z)-1, 

cP "" tK (z)/2; 
(59) 

l/I "" K(z)t l / 2K (z)-K(z)14, 

where K(z) is some arbitrary function of z. In terms 
of the proper time of a particular comoving observer 
it can be considered as having the structure 

where now P == (PI' P2 , P3 ) are the power dependences 
of cP and 1JI on the pruper lime of the matter lines. 

The interesting feature about this class of solution 
is that one of th~ arbitrary functions gets wiped out 
as one approaches the singularity, so that the data on 
the singularity (K(z» is not enough to generate the 
full metric, in contrast to the p < p case above. 
Another class of special p = p solutions has been 
found, however, which has the singularity structure 
P == (lie, lie, 1) (e any constant ~ - 2), and which 
does not seem to be velOCity-dominated. 

5. CONCLUSIONS 

We have shown in this paper by explicit demonstra­
tion that a unique and elegant structure can be assign­
ed to velocity-dominated singularities of perfect fluid 
models with a barotropic equation of state p = yp, 
whenever such Singularities appear in exact solutions 
of the Einstein equations. Furthermore, we show that 
it is at least self-consistent to consider the effects 
due to a time-varying equation of state in which y -70 
near the singularity, and viscosity (for 'Y > 0), to be of 
higher order so that they do not change the structure 
of the singularity. 

A great deal of work remains to be done. The 
immensely complicated and numerous consistency 
conditions remain to be disentangled and hopefully 
interpreted, especially for the (1,0,0) and y:::: 1 cases. 
The Lifshitz and Khalatnikov conjecture, 4 that the 
(1,0,0) singularities are merely caustics of matter 
flow lines and will be removed by pressure gradients, 
is perhaps somehow buried in the mess of the con­
sistency conditions. This is of particular interest 
because of its relation to the problem of horizons. 21 

The effect of rotations is another problem that might 
be of interest and importance. The construction of 
the b boundary 1 seems also to be possible. Finally, 
the study of the mixmaster-type singularities, which 
do not seem to fall into the velocity-dominated cate­
gory as it is defined now, is of crucial importance. 

To a large extent, our approach is very similar to 
the approach of Lifshitz and Khalatnikov, except may­
be a little more systematic and geometrically intepre­
table. DeWitt has also integrated the velocity-dom-
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inated equations for the vacuum case, though in a 
completely different context. 22 In any case, the 
number counting tells us that it is still far short of 
being generiC and generalization in some other direc­
tion must be searched if one hopes to obtain the most 
general singularity structure of cosmological solu­
tions of the Einstein equations. 
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A scheme is introduced which yields, beginning with any source-free solution of Einstein's equation with two 
commuting Killing fields for which a certain pair of constants vanish (e.g., the exterior field of a rotating star), 
a family of new exact solutions. To obtain a new solution, one must specify an arbitrary curve (up to parametri­
zation) in a certain three-dimetlsional vector space. Thus, a sitlgle solution of Einstein's equatiotl generates a 
family of new solutions involving two arbitrary functiotlS of one variable. These transformations on exact 
solutions form a non-Abelian group. The extensive algebraic structure thereby induced on such solutions is 
studied. 

1. INTRODUCTION 

In Ref. 1, a general scheme was described which 
yields, beginning with any source-free solution of 
Einstein's equation with a Killing vector ~ a, a one­
parameter family of (in general, distinct) exact solu­
tions. The method is as follows. Solve 

(1) 

(2) 

~af1a = ,,2 + w2 - 1, 
(3) 

for w, Qa,and i3a ,where'\ = ~a~a' (Existence of solu­
tions, locally ,is guaranteed by Einstein's and Killing's 
equations.) Then, for each real number 8, the metric 

(4) 

is again an exact source-free solution of Einstein's 
equation,2 where we have set 

~ = >..[(coSO - W sin8)2 + >..2 Sin2f1]-1, (5) 

(6) 

Now suppose we begin with a solution gab which admits 
o 1 

two Killing fields ~a and ~a. Then any linear com-
o 1 

bination of ~ a and ~ a (with constant coefficientslis 
again a Killing field. We can perform the transforma­
tion above with respect to that linear combination. It 
turns out, furthermore, that the resulting metric gab 

o 1 
again admits ~ a and ~ a as Killing fields, provided (i) 
o 1 
ga and ~a commute, and Iii) a certain pair of constants 
vanish. Finally if (i) and (ii) are satisfied initially, then 
they continue to be satisfied after the transformation 
(4) . 

It is clear from the remarks above that the possibility 
is now open3 to generate still larger classes of exact 
solutions by iterating the transformations (4). To our 
original metric g~b' apply the transformation with o 1 
respect to some linear combination of ~a and ~a. To 
the resulting metric, apply the transformation with 

o 
respect to some other linear combination of ~a and 
1 
~ a, etc. The crucial question is: Doe s the result of 
applying two successive transformations (4) (with 
different Killing vectors) depend on the order in which 
they are applied? If not, iteration~ of the transforma­
tion would be unnecessary: the entire class of metrics 
would be obtained already after the first application 
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of (4). It turns out, however, that the metric which re­
suUs from two successive applications of (4) does 
depend on the order in which they are applied. Thus, 
after the first application of (4), we obtain a two-par­
ameter family of solutions. (One parameter repre­
sents the fI value of the transformation, the other the 

o 1 
linear combination of ~a and ~ a used. 4 ) Applying the 
transformations (4) to each metric in this family, we 
obtain a four-parameter family. The third iteration 
yields a six-parameter familY,etc. Thus, beginning 
with just one solution of Einstein's equation (with a 
pair of commuting Killing fields), we expect to obtain, 
by successively iterating the transformations (4), a 
class of exact solutions too large to be characterized 
by any finite number of parameters. That is, the re­
sulting class of solutions should involve arbitrary 
functions. 

The purpose of this paper is to carry out the program 
outlined above. 

The iteration process can be described more con­
veniently by using infinitesimal transformations (4) 
(i.e., (j« 1) rather than finite ones. Let ~ a(t) (0 :s t 
:s 1) be a one-parameter family of Killing fields on 
the space -time M,gab' That is to say, for each value 

o 1 
of t, ~a(t) is some linear combination of ~a and ~a. Fix 
a small interval At. Now apply to our space-time 
successive infinitesimal (/7 = At) transformations (4), 
first with respect to the Killing field (At)-l[~a(AI) -
~a(o)], then with respect to (At)-l[~a(2At) - ~a(At)l, 
etc., ending with the transformation with respect to 
the Killing field (At)-l[~a(l) - ~a(1 - At)]. The result 
is some exact solution of Einstein's equation. Taking 
the limit as At ~ 0, we obtain, for each curve ~a(t) in 
the space of Killing vectors, a solution of Einstein's 
equation. (In this language, iterating finite transform­
ations amounts to considering only those curves which 
consist of broken straight-line segments.) The non­
commutativity of successive transformations implies 
that the final metric defined by a curve ~a(t) depends 
on the detailed behavior of the curve,not just on its 
endpoints. We thus expect to obtain, from one solution 
of Einstein's equation,a class of solutions which in­
volves one arbitrary funtion of one variable. [~a(t) is 
a curve in the two-dimensional space of Killing fields. 
But parametrization is irrrelevant.] 

It turns out, in fact, that the presence of two commut­
ing Killing fields gives rise to transformations more 
general than (4). As a consequence, one obtains, begin­
ning with a single solution of Einstein's equation, a 
class of new exact solutions which depend on two 
arbitrary functions of one variable. 

Does one expect these new solutions to have any phy­
sical significance? Suppose we begin with a Weyl 
solution. It has a pair of commuting Killing fields 
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(static and axially symmetric), and the two constants 
referred to earlier vanish. Applying all possible 
transformations above to this solution, we expect to 
obtain a class of exact solutions involving two arbi­
trary functions of one variable. Each of these solu­
tions will be stationary and axially symmetric. But 
the most general stationary, axially symmetric, 
source -free solution of Einstein's equation involves 
just two arbitrary functions of one variable (physic­
ally, the "mass distribution and angular momentum 
distribution along the axis"). Thus, at least by this 
crude argument, we expect a single Weyl solution to 
yield the general exterior metric of a rotating star! 
In other words, it is reasonable to suppose that any 
two exact solutions with a pair of commuting Killing 
fields (and whose two constants vanish) will, at least 
locally, be related by one of the transformations des­
cribed here. (I know of no proof of this conjecture, 
however.) 

Before one can determine a new solution using (4), it 
is first necessary to integrate certain differential 
equations,namely, (1), (2), and (3). Now suppose we 
have performed one transformation, and wish to carry 
out a second. One must first carry out integrals an­
alogous to (1), (2), and (3), but now referring to the 
metric gab' which resulted from the first transforma­
tion. Similarly, the third iteration requires the values 
of integrals referring to the metric obtained after the 
second iteration, etc. Ultimately, we wish to express 
the final metric in terms of quantities which refer 
only to the initial metric gab' and not to the intermedi­
ate ones. Only in this way can we retain any hope of 
describing the final class of new metrics in any sim­
ple way. Therefore, one must reexpress each of the 
intermediate integrals in terms of the original metric. 
We wish to write down, at the outset, the results of all 
the integrations which will ever have to be performed 
in iterating the transformations (4). 

It is instructive to attempt to proceed directly. To 
the metric If. b' apply the transformation (4) with re-

a 0 
spect to the Killing vector ~a. Now write down the 
expressions (1), (2), and (3) in preparation for the 
application of a second transformation with respect 

1 
to say, ~a. Express the (curl-free) right sides in 
terms of the original metric, and integrate. After 
some effort, one obtains new fields, which are defined 
by gab' but which one would have been unlikely to dis­
cover a priori. Now attempt a third transformation, 

o 
with respect to ~ a, and again express the required in-
tegrals in terms of gab' The effort is considerable 
this time, but one eventually discovers still other new 
fields. The various fields do not appear to fall into 
any simple pattern, and so it is difficult, proceeding 
in this way, to write down aU the fields (or even to 
tell if their number is finite). 

The solution of this problem-exhausting the list of 
fields defined by a single exact solution of Einstein's 
equation with a pair of commuting Killing fields­
requires a digression into the properties of such 
solutions. This is done in Sec. 2. It is convenient to 
adopt a two-dimensional formalism, in which the 
action of the isometries is "divided out." Einstein'S 
equation is then expressed as a set of differential 
equations involving certain scalar and tensor fields 
on a 2-manifold. (These equations are remarkably 

Simple.) We then define the collection of new fields, 
which, in fact, form an infinite sequence. It turns out 
to be convenient to divide the fields into pairs to 
obtain complex fields. The equations can then also be 
combined into complex equations. These fields are 
potentially important in any diSCUSsion of stationary 
axially symmetric solutions. 

The transformations themselves are discussed in Sec. 
3. Once all the fields have been defined, in Sec. 2, 
things become relatively simple. We obtain a set of 
differential equations giving the change in the fields 
(as a function of the curve parameter t) in terms of 
their values at t. The effect of the transformations is 
thus merely to shuffle the fields among themselves. 
The fact that no finite number of fields will suffice is 
reflected in the fact that the change in the nth field is 
expressed in terms of the values of the first n + 1 
fields. This feature also makes the equations difficult 
to solve. 

Unfortunately, it has not been possible to solve the 
equations in Sec. 3 in closed form, and thus to write 
down explicitly the complete class of new solutions of 
Einstein's equation. This deficiency is perhaps not so 
serious as it may appear, however. In a large number 
of special cases, one can obtain new solutions in 
closed form, and, even when no explicit form exists, 
one can still establish certain properties of the re­
sulting solutions. What is it in the structure of Ein­
stein's equation that causes its solutions to be subject 
to the transformations defined here? These topics 
are discussed in Sec. 4. 

2. SUPPLEMENTARY FIELDS 

Let M be a four-dimensional manifold, and gab a 
metric on M of signature (-,+, +, +) which is a solu­
tion of Einstein's (source-free) equation Rab = O. Let 
o 1 
~a and ~ Q be a pair of Killing fields on M which com-
mute: 

o 1 1 0 
~bV'b~a - ~bV'b~a = D. (7) 

As described in Sec. 1, the result of successive appli­
cation of the transformations (4) to such a solution 
involves an infinite collection of additional fields, 

o 
each of which can be expressed in terms of gab' ~a, and 
1 
~a. The purpose of this section is to define these 
fields. The discussion is simplified considerably by 
passing to a two-dimensional formalism, in which the 
action of the isometries is divided out. Our starting 
point, then, is the two-dimensional formulas giving 
Einstein's equation for a space-time with a pair of 
commuting Killing fields. (The formalism is descri­
bed in detail, and the equations derived, in Appendix 
A.) Using an inductive argument, we then define the 
sequence of new fields. These fields, whose mere 
existence requires Einstein'S equation, have a number 
of interesting properties. A few of these are dis­
cussed here. 

Let S denote the 2-manifold whose points are the 
orbits, in M, under the isometry group generated by 
o 1 
~a and ~a. We denote by hab the induced metric on S 
(A5), and by Da the (covariant) derivative on S with 
respect to this metriC (A7). We next introduce five 
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scalar fields on S. Three are given by the inner pro­
ducts of the Killing fields: 

00 01 11 
"-00 == ~a~a' "-01 == "-10 == ~a~a' "-11 == ~a~a' (8) 

and the other two by the formulas 
01 0 01 1 

Co == Eabed ~al;byc~a, c1 = Eabed~a~bvc~d. (9) 

It follows from Einstein's and Killing'S equations and 
(7) that Co and c 1 are constants. Expressed in terms 
of hab, XOO ' Xo l' XlI' CO' and C l' Einstein's equation takes 
the form (see Appendix A) 

Da[T-1Da"-oO] == 2T-3"-00[(Da AoO )(Da"-1l) 

- (Da"-Ol)(Da"-Ol)] + 2T-3(cO)2, 

Da[T-1DaA011 == 2T-3A01[(DaAoo)(Da"-11) 

- (DaA01}(DaA01)1 + 2T-3 cocV 

Da[T- 1DaAll ] = 2T-3 "-11[ (DaAoo)(DaA11) 

- (DaAOl)(DaA01)] + 2T-3 (C 1)2, 

ffi == T-2[(DaAoO)(DaAll) - (DaA01)(DaA01)] 

+ 6T- 4[2c oC1"-01 - {cO)2'\11 - (C1)2,\00)' 

(10) 

(11) 

where ffi is the scalar curvature 5 of S, and where we 
have defined 

(12) 

These equations can be written more concisely using 
an index notation. We introduce upper case Latin in­
dices with range 0,1. The three fields "-00' "-01, and 
All then define a symmetric tensor X AB , while the 
constants Co and C 1 define a vector cA' Mathemati­
cally, a quantity with upper case Latin indices re­
presents a multilinear mapping (linear if one index, 
bilinear if two, etc.) from the two -dimensional vector 
space of Killing vectors to the vector space of scalar 
fields on S. These Latin indices will be raised and 
lowered with an antisymmetric EAB(Le., EOO = Ell 

= 0, E01 == - E10 = 1), using the same rule as for 
ordinary spinors 6 : 

In this notation, Eqs. (10) and (11) take the form 

Da[ T- 1Da"-AS] == T- 3 AAB [(DaAMNHDa,,-MN) I 
+ 2r 3cA cB , (14) 

(15) 

We must now make an additional assumption, namely, 
that the constant cA vanishes. This assumption is re­
quired because of the following result: a transforma­
tion (4) on a solution of Einstein's equation destroys 
the presence of two Killing vectors unless cA == O. 
(See Appendix B.) Thus, it is only under this condition 
that we retain the possibility of iterating the trans­
formations. (This assumption does not appear to be 
very restrictive. In fact, I am aware of no solution of 
Einstein's equation for which cA "" 0.) We impose 
cA = 0 at this point because only then do the fields we 
wish to define exist. 
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Note that now the upper case Latin indices appear in 
(14) and (15) only in symmetric pairs. It is convenient, 
therefore, to replace such pairs by Greek indices. 
Thus, for example, the field "-AB will be written "-a' 
The "CI!" merely stands for the pair of indices "AB" 
that it replaces. More precisely, objects with Greek 
indices represent multilinear mappings from a three­
dimensional vector space (symmetric, second-rank 
tensors over the vector space of Killing vectors) to 
the vector space of scalar fields on S. The EAB defines 
a symmetric metric: 

GaB == - EA(CED)B' a ~AB, (3 ~ CD, (16) 

with signature (+, -, -). We shall raise and lower 
Greek indices with this metric, an operation equiva­
lent, by (16), to raising and lowering the corresponding 
Latin indices with EAB • 

We have now reduced our basic fields to hab and "-a' 
and Einstein's equation to 

Da[ T-1DaAa) = T-3Aa [(Da\,)(Da;>Jl»), 

ffi = ir2 [(DaAp)(Da,v»), 

where, from (12), 

These are the equations on which the remainder of 
this section will be based. 

(17) 

(18) 

(19) 

We introduce two further bits of notation. Define the 
totally antisymmetric field 

Q! ~ AB, (3 -; CD, y -) EF (20) 

so EaB)'EaB ), == 6. We denote by Eab the alternating ten­
sor field on S[(A6»). Finally, we shall use a star, 
applied to a vector field on S, to denote the dual, e.g., 

(21) 

Thus, ** =-1. 

A solution of (17) and (18) leads to an infinite sequence 
of further fields, each of which has a single Greek 
index. [In fact, one only uses (17). Note that this 
equation is conformally invariant.] We now define 
these. Contracting (17) with Aa,and using (19),we 
have 

(22) 

That is to say, T is an analytic function on S. Its con­
jugate function, defined by 

(23) 

is therefore also analytic. Next note that (17) implies 
that the right side of 

(24) 

is curl-free. Hence, (24) defines a new field, wa' [This 
wa is, in fact, precisely the twists defined by (AS).] 
We introduce the complex linear combination 
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o 
A" = Wa + iAa. (25) 

o 
It follows immediately from (17) and (24) that A a 

satisfies 
000 

DaDaAa = - h-1 E (DaAIl)(* D AV) (26) all v a· 
o 

This A" is the first of our sequence of fields. It fol­
lows from (26) and (23) that the right side of 

1 0 0 0 
DaAoc = - Eocl'vAIlDaAv + 2(a + T*)DaAa (27) 

1 
is curl-free, and hence that (27) defines a field Aa. 
But now the right side of 

2 0 1 1 0 
DaAa = - %E"IlV(AI'DaAv + AIlDaAv] 

1 0 
+ (a + T*)DaAa + (a + T*)2DaAoc (28) 

2 
is curl-free, defining Aa. [Polynomials in * are de-
fined by expanding and setting * * = - 1. For example, 
(a + T*)2 = a2 - T2 + 2aT*.] Proceeding inductively, 

n n-1 n-2 0 
we define A" in terms of A" ,Aa, ... ,Aa by 

n n-1 n-l 0 
DA =- (l/n)E (AIlDAv + ... +AIlDAv) 

a ex ap v a a 

n-1 0 
+ (2/n)[(a + T*)DaAa + ... + (a + r*)nDaAa]. (29) 

The existence of a solution (Le., the vanishing of the 
curl of the right side) follows from this same equa­
tion for lower values of n. 

To summarize, a solution of Einstein's equation with 
two commuting Killing vectors (and with C A = 0) is 
characterized by two fields,hab and Aa,on a 2-mani­
fold S, subject to (17) and (18). Such a solution then 
defines, via (25) and (29),an infinite sequence of com-

o 1 
plex fields, A a , A a , ••.• 

Are the A's all algebraically independent? The ans-
n 

wer is no. In fact, the imaginary part of Aa can be 
n-1 n-2 0 

expressed in terms of A a , A a, ... , Aa by the equation 

n 0 n-l n-1 0 
ImA = - (lInk (ReAIl ImA V + ... + ReAl' ImAv a allv 

n-l 
+ (2In)[Re(a + iT) ImA 

0" 
+ ... + Re(a + ir)n 1m Aa] (30) 

To prove this equation, one observes, from (24) and 
(27), that it is valid for n = 1, and, from (29), that its 
validity for n implies its validity for n + 1. Although 
one could certainly introduce only the independent 
variables (\, and the real parts of the A's),and write 
all expressions in terms of these, the result is to 
complicate rather than simplify equations. Strangely 
enough, Eq. (30) seems never to playa significant 
role. It is used at only one point in Sec. 3: to get an 
induction argument started. 

n 
Finally,note that (23) defines a,and (29) each A a , 

only up to an additive constant. This feature gives 
rise to an (infinite -dimensional) group of gauge trans­
formations on a and the A's. Gauge invariance pro­
vides a powerful check on formulas. In fact, an expres­
sion involving T, 0, and the A's is essentially uniquely 
determined by its behavior under all gauge trans­
formations. (It was through this fact that the induc-

tive formulas in this and Sec. 3 were obtained.) The 
gauge transformations, along with some parity and 
dimension transformations, are discussed in Appen­
dix C. 

3. GENERATING NEW SOL UTIONS 

Roughly speaking, the action of the transformations 
(4) is to shuffle the la among themselves. This 
"shuffling" is such that if one iterates only a finite 
number of transformations, then only a finite number 
of A's are involved in the final solution. However, as 
more and more transformations are applied in succes­
sion' the number of A's required increases without 
bound. In this section we shall derive the equations 
governing the behavior of these fields on 5 under the 
transformations (4), first in the infinitesimal and then 
in the finite case. 

Let the metric g~b of Sec. 1 admit commuting Killing 
o 1 0 

fields I; a and I;a, and let 1;0 be the Killing vector denoted 
I;a in Eqs. (1)-(6). Then the transformed metric iIab 

o 1 
of (4) also admits I; a and I;a as Killing fields provided 

(31) 

where £ denotes the Lie derivative. These equations 
can be satisfied if (and, in general, only if) cA = O. 
(See Appendix B.) Thus, in this case our new solution­
and all solutions obtained by further iterations of the 

o 1 
transformations-have I;a and I;a as commuting Killing 

fields. Note that, while the transformations alter the 
underlying metric on M, they leave invariant the vec-

tor fields g a and t a on M.7 

The general transformation can be obtained by iterat­
ing infinitesimal ones, and so we are led to consider 
the infinitesimal version (i.e., e« 1) of (4). To first 
order in e, Eq. (4) takes the form 

_ 0 

gab = gab - 28wOOgab + 4dl;(a(\'b)· (32) 

Equation (32) defines an infinitesimal change in our 
solution of Einstein's equation, and hence some infini­
tesimal change in the variables on S-hab' AOO' AOI 
and All-which define that solution. Using the identity 

1 1 
2l;b'qa (\'b] + £1 (\'a - va (I; b(\'b) = 0 , 

and Eqs. (2) and (31), we have 

1 
I;b(\'b = - 2-1/2 a + W01 • 

(33) 

(34) 

Hence, when the four-dimensional metric undergoes 
(32), the variables on S undergo 

° °b-Aoo --7 I;ai; gab = AOO + 2 e WooAoo, 
01_ 

AOI --7 ~a~bgab = AOI + 2ew01 "-00 - 2 1/ 280"-0°' 

1 1_ 
All --7 ~ai;bgab = All - 2dwOOAll 

+ 48w01 A01 - 23/2 80"Aoo, 

hab --7 hab - 2ewOO hab • (35) 

This equation expresses, ill two-dimensional language, 
the action of an infinitesimal transformation (4). 
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Eq. (35) can be written more concisely using the 
index notation. Define an operator <fa on ). a and hab 
by 

<faAa = AJlWa - Cas(WIlA Il ) + uEBajJAjJ, 

<fBhab = - wahab' 

Then (35) can be written 

Aa -7 Aa + 2(}K B <f BAa , 

hab -7 hab + 2 (}KB'I Bhab' 

(36) 

(37) 

(38) 

where KB has components KOO = 1,Kol = KI0 =: ](11 

=: 0, so KB is real, constant, and null. Infinitesimal 
transformations (4) defined by other Killing vectors 

o 1 
(other linear combinations of ~ a and ~ a) are obtained by 
letting KB in (38) be an arbitrary real, constant, null 
vector. 

These results can be checked directly. Applying the 
operator TB to both sides of (17) and (18),using (36) 
and (37), we obtain an identity in each case. [Note 
that (17) is conformaUy invariant, while (37) is an in­
finitesimal conformal transformation on S.J This re­
mark applies, of course, whether <fa is contracted 
with a vector KS or not. Therefore, we may drop the 
condition that Ka be null. Equation (38) defines an 
infinitesimal transformation on exact solutions for 
an arbitrary real, constant K B. This is an important 
pOint: The presence of two commuting Killing vectors 
gives rise to new infinitesimal transformations (Le., 
those for which KS is not null) which are not of the 
form (4) for any linear combination of the Killing 
fields. Whereas one might have expected at first that 
the class of infinitesimal transformations with two 
Killing vectors would be two dimensional, in fact it 
is three dimensional. This feature comes about 
essentially because the operator 
'I B has a Single Greek index, i.e., because an infini­
tesimal transformation (32) is "quadratic" in the 
Killing vector. 

Note that, from (19) and (36), 

<fB T2 = - 2Aa 'IBAa = O. 

That is, T [and hence, by (23), also a] is invariant 
under all the transformations. 

(39) 

We can now describe the iteration process in more 
detail. Let V denote the three-dimensional vector 
space of the a's, and let y(t) be a curve in V, para­
metrized by the real variable t(O :::; t:::; 1). Let y(O) 
be the origin of V, and let KB(t) be the tangent vector 
to this curve. By iterating the sequence of infinitesi­
mal transformations (38) defined by this curve, we 
obtain a one-parameter family, Aa(t), hab(t), of solu­
tions of (17) and (18), and hence a one-parameter 
family of exact solutions of Einstein's equati on. That 
is to say, this family of solutions must satisfy 

d~ Aa(t) = KB(t)'Fs Act(t), 

d 
dt hab(t) = KS(t)<fahab(t), 

(40) 

(41) 

where the right sides are given by (36) and (37). The 
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problem is to solve these differential equations given 
initial conditions: the values of Aa(t) and hab(t) at t = O. 

That (40) and (41) are not easy to solve arises from 
the fact that the right sides of these equations contain 
not only Aa(f) and hob(t), but also wa(t), and this quantity 
is defined only implicity in terms of Aa(t) by (24). 
Thus, it is necessary to determine how wa(t) varies 
along the curve y(t). Applying 'FB to (24), and using 
(36), we obtain 

1 

- tCas(wjJwll - AIlAjJ) - tEajJa ReAjJ. (42) 

That is, the behavior of wa(t) along the curve depends 
1 

on that of A"t). Equations (36) and (42) can be written 
neatly in the complex notation r see (25) and (30)]: 

(43) 

1 
To determine the behavior of Aa(t) along the curve, we 
apply <fa to (27), using (43), to obtain 
10110 01 

<fsAa = ~AsAa + tAaAa- tCaB(#AjJ) 

2 0 ° ° - j EajJ " All - ~E/liJ"AIl(AVA). (44) 
1 2 

The behavior of A,,(f) depends on that A,/f). We pro-
ceed by induction. Consider the equation 

'l" BAa = 6 (a 1)-1(01 + a2)-1. .. (n + 2)-1 

(45) 

where the sum extends over aU ordered collections, 
(° 1,°2,'" ,am) of positive integers satisfying a 1 + 
a2 + '" + am = n + 2. (Hence, 1 :::; m:::; n + 2.) Equa­
tion (45) reduces to (43) when n = 0, and to (44) 
when n = 1. Furthermore, applying <(' B to (29), we see 
that the validity of (45) for n < S implies its validity 
for n = s. Hence, (45) determines the behavior of all 

n 
the Aa along the curve y(t). 

To summarize, a solution of Einstein's equation, gab' 
with a pair of commuting Killing vectors and CA = 0, 

o 1 
defines a sequence,A a , Aa , ••• ,of fields on S. To 
obtain a new solution, we must first specify any curve, 
y(t)(O :::; f -:'0 1), in the three-dimensional vector space 
V, with y(O) at the origin. Let KB(t) be its tangent 
vector. We must solveS the equations 

(46) 

(47) 

n 
for Aa(t) and h ab (t), subject to initial conditions: At 

n 
t = 0, Act(t) and hab(t) reduce to the quantities deter-
mined by our original metric gab' The right sides of 
(46) and (47) are evaluated using (45) and (37). The 
values of these fields at t = 1 then define a new exact 
solution of Einstein's equation, again with a pair of 
commuting Killing vectors. Thus, beginning with a 
curve in V and an exact solution, we obtain a new 
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exact solution. (The re suiting solution is, of cour se, 
independent of the parametrization of y(t).) Equations 
(46) and (47) are not easy to solve because, by (45), 
the right side of the nth equation (46) involves the 

n+l 
A's up to Act' Thus, it is not possible to solve the 
equations one at a time: they must all be solved 
simultaneously.9 (This feature, of course, reflects 
the fact that the entire sequence of A fields is re­
quired to discuss the transformations.) 

Finally, we verify an assertion made in Sec. 1, namely, 
that the result of integrating (46) and (47) in general 
depends on the details of the curve ,,(t), not just on 
the endpoint of that curve. ClearlY,nontrivial depend­
ence on the curve itself reduces to the assertion that 
the operator 'f' [et 'f' B 1 is nonzero. But, for example, 
from (45), we have 

o 0 OQ 10 1 
'f'[et 'f'B 1 Ay = ~ A [et GB1}' (AflAfl ) + 4"Ay EetBflAfl 

o 1 1 0 1 ,0 1 
- tA[et E Bl YflAfl + *A [et E BJyfl Afl- 4" Eet {3Y (AIlA Il ) 

1 0 1 1 2 
+ 2Gy[etEBl lluAIlAU - !fA [etGBly' (48) 

and the right side is nether zero nor a gauge trans­
formation (Appendix C). Thus, we expect the general 
solution of Einstein's equation, obtained from a single 
solution, to depend on two arbitrary functions of one 
variable. (A solution is defined by a curve, up to par­
ametrization, in the three-dimensional vector space 
V.) 

4. CONCLUSION 

The general solution of Einstein's equation in the 
static, axially symmetric case [i.e., of Eqs. (17) and 
(18)] is not known. But neither is the general solu­
tion of (46) and (47) known. Do the transformations 
described here contribute, then, to the goal of obtain­
ing new exact solutions of Einstein's equation? In 
fact, it is considerably easier to obtain specific solu­
tions of (46) and (47) than of (17) and (18). The reason 
is that, to fix a solution of the elliptic partial differ­
enthl equations (17) and (18),one must specify the 
boundary conditions. It is difficult in practice to 
select special cases (Le., simple boundary conditions) 
for which these equations can be solved. Equations 
(46) and (47), on the other hand,involve an arbitrary 
curve in V. If one chooses an explicit, and not too 
complicated, form for the curve y(l) (e.g., any broken, 
null straight line), the equations can be integrated 
explicitly. One obtains in this way many new, exact 
solutions of Einstein's equation in closed form-solu­
tions one would never have guessed from (17) and (18) 
(much less from Rab = 0). 

Furthermore, many of the questions one might wish 
to ask of an exact solution can be answered without 
an explicit form. (After all, most solutions, just as 
most functions, don't have any "explicit form.") Is a 
solution asymptotically flat? Static? What are the 
multipole moments ?10 What is the nature of the sin­
gularities? It turns out that the transformations de­
fined here are well-suited for discussing questions 
of this type. The reason, again, is that the solutions 
defined by (46) and (47) from a given solution of 
Einstein's equation are labeled in a particularly 
simple way-by curves in V-while solutions of (17) 
and (18) are labeled by boundary conditions. One 

could ask, for example, for the necessary and suffici­
ent conditions that a certain property (e.g., staticity) 
be preserved by y(t)-a question having no analog in 
(17) and (18). 

Of course, it is not only formulas for and descriptions 
of exact solutions which are of interest in general 
relativity. In particular, one would like to understand 
more deeply the structure of Einstein's equation, or, 
what is perhaps the same thing, of the set of solutions 
of that equation. What structure arises from the tram;­
formations obtained here? Let V be a real, three­
dimensional vector space, and consider the collection 
of all piecewise smooth 11 curves y(l) (O:s t :s 1) in 
V for which 1'(0) is the origin of V. We regard two 
such curves as equivalent if they differ by a repara­
metrization or a retracing.12 (Equivalent curves 
clearly define the same transformation on solutions.) 
On the collection g of equivalence classes we define 
a composition law. If y'(t) and y"(t) represent ele­
ments of g, their product is the element of g repre­
sented by 

, "(t) y'(2t), O:s t:s ~ 
yy =y'(1)+y"(2t-l), ~:st:s1. (49) 

Thus, g becomes a (non-Abelian, infinite-dimensional) 
group. [The identity is the constant curve which re­
mains at the origin. The inverse of y(t) is - y(t).] 
This g, the group of "effective transformations," acts 
on the collection of aU exact solutions of Einstein's 
equation with a pair of commuting Killing vectors 
for which the constants (9) vanish. The crude argu­
ment (counting functions) of Sec. 1 suggests that this 
action is simply transitive 13 (Le., that any two solu­
tions are related by exactly one element of g). Thus, 
these solutions of Einstein's equation are acted upon, 
perhaps simply transitively, by some group g. What 
is it about Einstein's equation that should cause its 
solutions to carry so rich a structure? 

APPENDIX A: EINSTEIN'S EQUATION WITH TWO 
COMMUTING KILLING VECTORS 

Let M be a four-dimensional manifold, and gab a 
metric on M of signature ( -, +, +, +) which satisfies 

o 1 
Einstein's equation,Rab = O. Let ~a and ~abe a pair 
of Killing vector s on M which commute with each 
other (7). Because of the presence of a two-para­
meter group of motions, the metric essentially de­
pends on only two independent variables. One is led, 
therefore, to introduce a 2-manifold S such that posi­
tion in S is the "independent variable." The metric 
and Killing vectors can then be expressed in terms 
of certain fields on S. The purposes of this Appendix 
are to introduce a formalism based on this idea, and 
to rewrite Einstein's equation in the formalism. (For 
a completely analogous procedure with one Killing 
vector, see the Appendix of Ref. 1.) 

The first step is to divide the space-time Minto 
orbits under the isometries. Two points p and q of 
M are defined as lying in the same orbit if there is 
a curve from p to q whose tangent vector is every-

o 1 
where a linear combination of ~a and ~. It will be 
convenient to impose three additional conditions on 
the orbits. Firstly, we assume that, at each point of M, 
o 1 
~a and ~a are linearly independent. (This assumption 
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eliminates regions such as the axis in the static, 
axially symmetric solutions.) Fortunately, the set of 
points at which the Killing vectors are linearly depen­
dent is necessarily closed and of dimensionality less 
than four,14 and so such points,if initially present in 
M, can be excised. The local linear independence of 
the Killing fields, together with the vanishing of their 
commutator, implies15 that the orbits are two-dimen­
sional surfaces in M. Secondly, we require that the 
subspace of the tangent space at each point spanned by 
o 1 
~a and ~a be timelike. Thus, the orbits are timelike 
2-surfaces. The choice of "timelike" rather than 
"spacelike" is merely for definiteness: The spacelike 
case differs from the one treated here simply by a 
few reversals of sign. On the other hand, it is import­
ant that the orbits do not become null, for we shall 
soon introduce a metric on the set S of orbits, and 
nonsingularity of the metric will be essential. Finally, 
we assume that Sis a smooth (two-dimensional, Haus­
dorff) manifold, and that the natural mapping 'lJ: M ~ S 
is smooth. [I}I is the mapping which takes each point of 
M to the orbit (point of S) which passes through that 
pOint.] This condition always hold locally. Intuitively, 
it imposes the global requirement that no orbit 
"comes back arbitrarily near to itself." 

It should be emphasized that the sole purpose of these 
three assumptions is to permit the introduction of 
the two-dimensional formalism below. This forma­
lism in turn serves only to (considerably) simplify 
the calculations. The final transformations (Sec. 3) 
on exact solutions of Einstein's equation, when expres­
sed in four-dimensional language, do not require any 
of the assumptions above. 

We now have a 2-manifold S. The next step is to dis­
cuss tensor fields on S. The treatment of such fields 
is based on the following result: there is a natural, 
one-lo-one correspondence (induced by 'lJ) belween 
tensor fields !fa . .. cb • •• Ii on S and tensor fields 
Ta . •• C b • •• d 011 M which sa tisfy 

o 0 
~aTa ••• cb ••• a = 0,"', ~dTa •• ,cb ••• d = 0, 
1 1 
~aTa",cb ••• a=O,···,~dTa",cb ••• d=O' (Al) 

.co Ta ••• c = 0 
t b ... d' 

(A2) 

FU1·thermore, this mapping from fields on S to fields 
on M commutes with the algebraic tensor operations 
(addition~outer product, and contraction). The proof 
is essentially the same as that of the analogous re­
sult for one Killing vector.! As a consequence of this 
theorem, tensor calculations on the 2-manifold Scan 
be performed without ever leaving M. We simply drop 
the distinction between tensor fields on S and those on 
M which satisfy (Al) and (A2). All tensor calculations 
can, at least formally, be interpreted as concerning 
fields on the space-time manifold M. However, we 
are led to concentrate on a certain class of fields on 
M which are of particular interest, namely, those 
which are on S[Le., those which satisfy (Al) and (A2)]. 

Consider the inner products of the Killing fields: 

(A3) 
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It follows immediately from commutativity of the 
Killing vectors that these three scalar fields are on 

o 
S. The statement that the 2-flats spanned by ~a and 
1 
~ a are timelike at each point is equivalent to the 
assertion that the right side of 

is positive. So (A4) defines a scalar field T on S. 
Furthermore, the fields 

o 0 1 1 
hab = gab + 2T-2All~a~b + 2T-2AOO~a~b 

(A4) 

-2 0 1 
- 4T A01 ~(a~b)' (A5) 

o 1 
Eab = 2112 T -1 Eabcd ~c ~ d (A6) 

are on S. They are the metric and alternating ten­
sor of S, respectively. The metric, which is positive 
definite, will be used to raise and lower indices. Note 
that EabEab = 2. Finally, observe that,if Ta"' C

b ... d 
is any tensor field on S, then so is 

DpTa • •• cb • • • Ii = hp qh m a • •• hn Ch{ ••• haS \lqTm • • • n ... • • s' 

(A7) 
Equation (A 7) defines the derivative Da on S. Of 
course, Da is just the covariant derivative with res­
pect to the metric hab on S. In particular, we have 
Dahbc = 0, an equation which can easily be verified 
using (A5) and (A7). 

To summarize, our space-time M,gab defines an 
abstract 2-manifold S with positive-definite metric 
hab (and, therefore, an alternating tensor and deriva­
tive operator). The idea is to find a collection of 
fields on S which completely characterize the space­
time, and to rewrite Einstein's equation as a set of 
differential equations on these fields. It will turn out 
that an appropriate collection of fields is given by 
the metric,the A's,and two additional constants (to 
be defined shortly). 

It is convenient to first introduce some additional 
fields. We define the twists of our Killing vectors 
as follows: 

o 0 woo = Eabcli~bv,,~d' 
o 1 1 0 

w81 = iEabcd(~b\lG~d + ~b\lC~d)' 
1 1 

Wall == Eabcd ~b\lc~d' 

(AB) 

T,Tnfortunately, these three contravariant vector fields 
on M are not necessarily on S-they may fail to satisfy 
(Al). To obtain fields on S, we take projections: 

(A9) 

IIh == habu.,bll • 

(A10) 
It is not difficult to verify. using Einstein's and Kill­
ing's equations and the vanishing of the commutator. 
that Co and c 1 must be constants. (The vanishing of 
both Co and c 1 is a necessary and sufficient condi-

o 1 
tion that the 2-flats orthogonal to ~a and ~a at each 
point be integrable.) Einstein's equation implies, 
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furthermore, that the twists (A8) are curl free. 
Taking the curls of (AlO), and using this fact, we 
obtain 

D[avObd == 2-1/2T-1[(co)2A01 - COC1Aoo]€ab, 

D[a'f/i = i 2- 1/2T-1 [(cO)2All - (c1)2Aoo ]€ab, (All) 

D[avtl == 2- 1/2 T-1 [(COC lAll - (c l )2Ao J€ab. 

Although the twists will later play an important role, 
they do not carry any new information from the 
space-time M to S. In fact, there are equations, which 
we now derive, expressing the v's in terms of the 
A'S. The vanishing of the commutator of the Killing 
vectors implies 

o 1 1 0 

i DaA01 = PVa~b = ~bva~b' (A12) 

Substituting into (AI2) the expressions l 

o 0 0 
va~b = i(AOO)-lEabed~cwgo + (AOO)-l~[bDalOO' 
111 

\Ia~b = i (All)-1€abed~ewt1 + (All)-I~[bDalAll 
(A13) 

for the derivative of each Killing vector in terms of 
its norm and twist, we obtain 

v~O = 2 1i2T-1€ab( - A01DbAOO + AOaDb A01)' 

V~l = i2 Ii2 T- 1€ab( - AllDbAOO + AOaDbAll), 

Vi\ == 21/2 T-1€ab( - AllDbAOl + A0 1DbAll ) 

(AI4) 

The projected twists, the V'S, are therefore extrane­
ouS.16 

We now derive the first set of Einstein equations. 
Taking the curls of (A14), and using (All), 

A01Da[ T-1DaAOO] - AooDa[ T-1DaAo11 
= T-I[(cO)2AOl - COC1AOO], 

A llDa[ T-1DaAOO] - AooDa[ T-1DaAll ] 

= T-1[(cO) 2A ll - (c1 )2AOO], 

AOIDa[ T-1DaA ll ] - AllDa[ T-1DaAOl] 

= T-I[(Cl)2AOI - COC1A ll ]· 

(A15) 

Unfortunately, these three equations are linearly 
dependent, and so cannot be solved immediately for 
Da[rlDaAOoLDa[T-1DaAotl and Da[T-1DaAIJ. To 
obtain a further equation, we proceed directly: 

o 0 
DaDaAoo = habva(hb mVmAoo) = 2habva(~mvb~m) 

o 0 0 0 
= 2hab~mvavb~m + 2hab(va~m)(vb~m) (Al6) 

= 2T-2Aoo[(DaAoo)(DaAll) - (DaAol)(DaA01)] 

+ T-1(D a T)(DaA oo ) + 2T-2(cO)2, 

where, in the last step, we have used (A13),R ab = 0, 
o 

and the fact that any Killing vector ~a satisfies 

(A17) 

Equations (AI5) and (16) now imply that the three 
norms,A oo,A o1 ,and All satisfy 

Da[T-IDaA OO ] = 2T-3Aoo[(DaAoo)(DaAll) 

- (DaAo1)(DaA01)] + 2T- 3(CO)2, 

Da[T-1DaAo1 ) = 2T-3Ao1[(DaAoO){DaAll) 

- (DaA01)(DaA01)] + 2T-3coc1, 

Da[ T- 1DaAll ] = 2T-3All[(DaAoo)(D aAll) 

- (DaA01(DaA01)] + 2T-3(c 1)2. 

(AIS) 

The first three Einstein equations are (AI8). The 
final one, which relates the curvature of S to the other 
variables, is derived by communting D-derivatives. Let 
ka be any vector field on S. Then 

where <Rabed is the Riemann tensorS of S. Expanding 
(A19), and eliminating first derivatives of ka using 
(AI) and (A2), we have 

o 0 
~ <R abed k d = h[a mhb{hePk 9 [ t Rmnpq + r- 2Al1 (v m~n)(Vq~p) 

1 I 0 1 
+ r2AOO(Vm~n)(Vq~p) - r-2A01(Vm~n)(Vq~) 

(A20) 

2 0 0 1 1 
- T- All(Vm~p)(Vn~q) - r-2AOO(Vm~p)(Vn~a) 

o 1 1 0 
+ T-2AOl(Vm~p)(Vn~q) + T-2A01(Vm~p)(Vn~q)]. 

Since ka is arbitrary (on S), (A20) gives the Riemann 
tensor of S in terms of that of M. Contracting twice, 
using (AI3) and Rab = 0, we obtain the desired result: 

<R = T-2[(DaAoo)(DaAll) - (DaAo1)(DaA01)1 

+ 6T-4[2coC 1AOl - (Co) 2All - (C1 )2AOO )' (A2l) 

Equations (AIS) and (A21) are equivalent to Einstein's. 
That is to say, a 2-manifold S with (i) a positive-de­
finite metric hab, (ii) three scalar fields AOO' AO!' and 
All' and (iii) two constants Co and C1 subject to (AlS) 
and (A21), defines a unique space-time with two com­
muting Killing vectors and with Rab = 0, and conver­
sely. 

APPENDIX B: WHEN ARE KILLING TIELDS PRE­
SERVED? 

Let M, ga b be a source-free solution of Einstein's 
o 1 

equation, with commuting Killing fields ~ a and ~ a. 

Suppose we apply to this metric the transformation 
o 

(4) with respect to one of the fields, say ~a. Then, of 
o 1 

course, ~a and ~a will still be commuting vector fields 
o 

on the manifold M, and ~ a will be a Killing field for 
1 

the new metric gab' Under what conditions will €a 
also be a Killing field for iab ? More generally, what 
are the necessary and sufficient conditions that the 
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transformations (4) (with respect to all linear com-
o 1 

binations of ~a and ~a) preserve the presence of two 
commuting Killing fields? We answer this question 
here. 

Suppose first that neither Killing vector is destroyed 
o 1 

by (4), for any linear combination of ~ a and ~ a. Apply 
o 

(4) with respect to ~ a. Then, in particular, the Lie 
derivative of 
o 0 
~a~bgab' = Aoo[(COse - woo sine)2 + (Aoo)2 sin2et1 

1 
(Bl) 

by ~a must be zero for all e. But £IAOO = 0 by (7), and 
so the quantity t 

(B2) 

must vanish. Similarly for C l[Eq. (9)1. Thus, a neces­
sary condition that all transformations (4) preserve 
both Killing fields is Co = C 1 = o. 
Conversely, we show that, if Co == C 1 = 0, then gab 
necessarily has a pair of commuting Killing vectors.7 

o 
Apply (4) with respect to ~a. Taking the Lie deriva-

_ 1 

tive of gab with respect to ~a, and using the vanishing 
of (B2), we have 

£lgab == 2>"71 (a£l71b) (B3) 
t 

Substituting (6), it follows that the vanishing of (B3) 
(for all e) is equivalent to 

(B4) 

1 
Thus, the new metric gab will have ~a as a Killing 
field provided we can choose the vector fields (1a and 
f3a to satisfy (2), (3), and (B4). There is gauge freedom 
in (1a and f3a : We can add to either the gradient of a 

o 
scalar field which has vanishing derivative in the ~ a_ 

direction. The idea is to use this freedom to satisfy 
(B4). Suppose a given (10. satisfies (2) but not (B4). 
Then aa + YaCfJ will satisfy both (2) and (B4) provided 

(B5) 

1 
Yb(~aYaCfJ) = - £l(1b. (B6) 

Taking the curl of the right side of (B6), using (2), we 
obtain zero. Hence, £1(1 = Yak for some scalar field 

t a 

k on M. Equations (B5) and (B6) reduce to 

The integrability condition for (B7) is 

But (B8) is satisfied, for 
o 0 

£0 k = ~ay k = ~a£ 1 a tat a 
o 0 

== £l(~aaa) - (1 £l~a = 0, 
~ a t 

(B7) 

(B8) 

(B9) 

where, in the last step, we have used (2) and the vani­
shing of (B2). A similar argument applies to f3 a • 
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Thus, a necessary and sufficient condition that the 
transformations (4), for an arbitrary linear combina-

o 1 
tion of ~a and ~a, preserve both Killing vectors is 
Co = cl = O. 

APPENDIX C: GAUGE, PARITY, AND DIMENSION 
TRANSFORMATION 

Consider a pair of fields Ao. and hab on a 2-manifold 
S, subject to (17) and (18) (Le., a solution of Einstein's 

o 
equation). Define T by (19),0 by (23),Ao. by (24) and 

n 
(25), and Ao. by (29). At several points in this proce-
dure, we defined a quantity by an expression for its 
gradient,. and so we have the freedom to add to that 
quantity a constant. That is, not all the fields T,O, 
o 
Ao. are uniquely determined: There exist gauge trans-
formations. The resulting gauge group (an infinite­
dimensional, non-Abelian Lie group) certainly re­
presents a fundamental property of the fields. Fur­
thermore, two alternating tensors were used in Sec. 
2, Eab (A6) and E0.8r (20). One can reverse t~e signs of 
these, with consequent effects on T, 0, and A a. Finally, 
there is freedom to multiply either of the two metrics 
hab [Eq. (A5)] and GudEq. (16)] as well as Au' by con­
stant factors, giving rise to dimensions associated 

n 
with T, 0, and Au. In this Appendix we shall derive the 
formulae for the effects of these transformations. It 
is interesting that these transformations can be 
extended to the operator eru (that which gives the in­
finitesimal change in an exact solution of Einstein's 
equation) of Sec. 3. 

We first consider the gauge transformation which 
arises from (23). This equation defines ° only up to 
an additive constant. Hence (taking the infinitesimal 
case), we ask for the effect, to first order in E, of 

0.-70+E. (C1) 

Since T and Au are invariant under (Cl), (24) implies 
o 

that wu' and hence A a' are invariant. But (27) implies 
110 

that, under (Cl),Ao. -7 Ao. + 2EAo., to first order in E. 
2 2 1 

Then (28) gives Ao. .-7 Ao. + 3EAo.' Proceeding induc-
tively, using (29), 

(C2) 

A second gauge transformation arises from adding a 
constant to w , defined by (24). This clearly leaves T, 

° and A inv:riant, and so has the effect , a 
000 
A",-7A", + Po.' 

o 
where Pais real and constant. 

(C3) 

Proceeding inductively 
o 

as before, we have, to first order in P"" 

(C4) 

n 
Finally, there is freedom to add a constant to A",[Eq. 
(29)], leaving the earlier A's invariant: 
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Using induction on (29), (C5) has the following effect 
m 

on the remaining A a: 
m m n n-m-1 
Aa~Aa-EalluPIl AU, 

n 
to first order in Pa' 

These infinitesimal gauge transformations can be 
dealt with most easily by introducing appropriate 
operators. The action of (Cl) is expressed by the 
operator W, defined by 

Wa = 1, WT = 0, 

m2:: 1, 

(C6) 

(C7) 

n 
For each integer n 2:: - 1, define an operator Wa by 

n 
WaG = 0, 
n m 

WaAB = 0 

n 
WaT = 0, 

(m < n), 
m-n-1 

All (m>n), (C8) 

Then, for n = - 1, (C8) represents an infinitesimal 
rotation in the (indefinite, three-dimensional) vector 
space of the a's, while the action of (C4) is given by 
(C8) for n = O,and that of (C5) by (C8) for n > O. The 
commutator of two infinitesimal gauge transforma­
tions is another. These commutators follow immedi­
ately from (C7) and (C8): 

n n+1 
[W, Wa 1 = (n + 1) Wa , 

n m n+m+l 

[Wa' We1 = EaellWI1. (C9) 

Finally, the commutators of the gauge operators and 
the transformation operator 'fa (45) are. 17 

-1 
[W, 'fa] = - Wa , 

n n-1 

[Wa' T'e1 = EaBIlW Il. 
(CI0) 

We next consider parity transformations. Reversing 
the sign of Eab leaves T and Aa invariant, but reverses 
the sign 0& G [bYa (23)1 a~d of wa [by (24)1. Hence, the 

effect on Aa is Aa ~ - A a , where a bar denotes com-

• Present address: The Enrico Fermi Institute, 933 E. 56 St., 
Chicago, Ill. 60637 . 

1 R.Geroch,J.Math.Phys.12,918 (1971). 
2 This new solution is always defined locally, even in regions in 

which A changes sign. However, there may be singularities which 
arise from global obstructions to integrating (1), (2), and (3). See 
Ref. 1. 

3 The special case of the transformation (4) in which is hyper­
surface orthogonal (i.e., "-' = 0) was earlier obtained by Ehlers, 
in Les /lleories reialil'isl!'s de /a gravitaliun (C NRS , Paris, 1959). 
Unfortunately, hypersurface orthogonality is not preserved by the 
transformations, and so the possibility of iterating the transfor­
mations to obtain further solutions did not arise. 

4 The transformation (4) with ~a replaced by some constant mul­
tiple of ~a is identical with (4) with e replaced by a certain func­
tion of e. 

5 Our conventions are as follows: D[aDb]kc = ~ ffiabcdkd, ffiac = ffi amc m. 
6 See, for example, F. A. E. Pirani, in Bvandeis SU1IImer II/stilule in 

Tileo. Plirsics. 1961 (Prentice-Hall, Englewood Cliffs, N.J., 1965). 
7 Equations (2) and (3) permit the addition of certain gradients to 

CIa and Ila • This alters the final metric (4), but only by applying to 

plex conjugation. Then (29) implies that, for general 
n, 

(Cll) 

Similarly, reversing the sign of EaBy leaves T, 0, and 
Aa invariant, but, by (24) reverses that of wa' Hence, 
for general n, 

(C12) 

Both parities of T' a are negative. 

We next consider the A -weight. If hab , Aa is a solution 
of (17) and (18), then so is hab' cAa' where C is any 
nonzero constant. The A-weight of a quantity will be 
defined as the power of C by which it is multiplied 
under (hab' Aa) ~ (hob' CAa)' So Aa and T [and, by (23) 
a1 have A-weight 1, while hab has A-weight zero. From 

a 
(24), wa ' and henceAa , has A-weight 1. Then (29) im-

n 
plies that Aa has A-weight (n + 1). The operator T' a 
increases the A-weight by 1. 

Equations (17) and (18) are invariant under constant 
conformal transformations on S(hab ~ 02hab ) provided 
Aa is left unchanged. Since (23), (24), and (29) are 
conformally invariant, all the fields except hab are in­
variant. 

Finally, we consider the "conformal transformation" 

(C13) 

where 0 is a real constant. One might think that the 
G dimension of a quantity is best defined as the power 
of Oby which it is multiplied, under (C13). This, how­
ever, would be inconvenient, for the G dimension of an 
indexed field would then depend on the location (raised 
or lowered) of its indices. To avoid this inconvenience, 
we define as the G dimension of a field: [the power of 
n by which it is multiplied under (C 13)] - (the number 
of lowered Greek indices) + (the number of raised 
Greek indices). Then the G dimension is invariant 
under raising and lowering of indices, and under con­
traction,18 The G dimension of GaB and EaBy are zero. 
We are free to choose the G dimension of Aa arbitrar­
ily, for two distinct choices differ only by a A-weight 
transformation. We therefore choose for Aa G dimen­
sion zero, whence all fields have G dimension zero. 

it a diffeomorphism. Consequently, although (4) always h~s a 

pair of commuting Killing fields, these fields may not be E
a 

and 
1 
Ea. It is always pOSSible, on the other hand, to choose CIa and Ila so 

that ~a and laWill themselves be the Killing fields. The existence 
of this possibility is not surprising: any two 4-manifolds, on each 
of which there is specified a pair of pOintwise linearly indepen­
dent, commuting vector fields, are locally identical. 

8 Once (46) has been integrated, the integration of (47) is easy. 
[See (37).1 Hence, we need not be concerned further with (47). 

9 For certain special choices for the curve") (I), only a finite num­
ber of A 's are required for the solution. 

10 R. Geroch, J. Math. Phys.ll, 2580 (1970). 
11 One could certainly admit curves more general than the piece­

wise smooth ones. What is the largest admissible class? 
12 More preCisely, }(t) and 1"(1) are equivalent if there is a con­

tinuous mapping <?: [0,1] x [0,1]--> V such that 

(i) <p(s, 0) = I' (0) = 1"(0) and cp(s, 1) = 1'(1) = 1"(1) for all s, 
(ii) <p(0, I) = 1'(1) and cp(l, I) = y'(l) for all t, and if 
(iii) the range of (j) is a subset of the union of the ranges of"y and 

1'" I wish to thank M. MacCallum for this definition. 
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13 One would only expect this statement to hold locally, in a suitable 
sense. An analogous global result may exist, but one would have 
to eliminate space- times which contain "holes," or which are 
obtained by making "identifications." 

14 See, for example, R. Geroch, Commun, Math. Phys.13, 180 (1969). 
15 See, for example, J. A. Schouten, Ri!'!'i (,,,!e,i/,,s (Springer-Verlag, 

Berlin, 1954), pp. 78. 
16 A number of theorems involving conditions under which commut­

ing Killing fields are hyper surface orthogonal, or orthogonal to 
each other, follow from (AI4). For example: If two Killing fields 
commute and are p"erywhcre orthogonal to each other, and Rab = 
0, then each is hypersurface orthogonal. 
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17 Compare Eqs. (ClO) and (C9). As far as its commutation rela­
tions are concerned, ,(", behaves exactly like an infinitesimal 
gauge transformation, '\Va for 11 = - 2! 

18 This scheme is also convenient for defining the dimensions of 
quantities in general relativity. One considers a solution of all 
his equations, with metric ifa" and asks for a corresponding solu­
tion with metric fl2gab (fl = const). Then each field is multiplied 
by some power of fl. One defines the dimension of each field 
(units of seconds) as in the text. This procedure gives the answer 
one expects physically (e.g., for Maxwell fields, stress- energy, 
pressure, etc.). 
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We have studied the solutions of a wave equation which describes a spin-zero particle in the Coulomb field of a 
nucleus. An interesting feature of this equation is that the kernel is not of the Fredholm type. The behavior of 
the momentum space wavefunction for large momentum is not determined solely by the angular momentum 
state but, as in the cases of the Dir.ac and Klein -Gordon equations, it depends on the electric charge as well. 
Our analysis of the asymptotic properties is based on a Mellin transformation of the momentum space equation. 
This leads to a singular integral equation with a Cauchy-type kernel which may be treated by standard methods. 
The equation is shown to have unique solutions. 

I. INTRODUCTION 

When we began a phenomenological analysis of pion 
alpha -particle scattering sometime ago, we were 
faced with the problem of choosing a wave equation 
incorporating two-particle relativistic effects. We 
wished to describe both electromagnetic and strong 
interactions. At first, the Klein-Gordon equation 
appeared to be a likely possibility, but it has no pro­
bability interpretation so we were led to consider the 
problem of Coulomb scattering for two spin-zero par­
ticles from the field theoretic point of view. 

This led us to the following wave equation for two 
free particles of mass m v m 2 and momenta Pv P2: 

[(P~ + mV1/2 + (p~ + m~)1/2]1P(PVP2) = POtIJ(Pl,P2)' 

where Po is the total energy, and we choose 11 = c = 1. 
If the Coulomb interaction is included, an additional 
term, 

I V(pv P2' pi, Pa)tIJ(pi, Pa)d3pid3Pa, 

describing the Coulomb interaction V appears. 

This equation is a member of the class derived on the 
basis of general relativistic principles by Bakamjian 
and Thomas1 almost two decades ago. Such an equa­
tion has been known2 even longer. The relationship 
between this equation and the Klein-Gordon equation 
has been discussed by Feshbach and Villars. 3 More 
recently, Zemach4 has analyzed the relation between 
this equation and that for the two-body Green's func­
tion 5 defined by Schwinger. 

The Bakamjian-Thomas equation has been studied by 
a number of authors6 during the past few years. They 
have concerned themselves with the case of short­
range interactions. In the following pages we present 
the theory of the equation for the case of an interac­
tion which is the time component of a vector field. In 
this case the resulting integral equation is not of the 
Fredholm type. Its solutions may be shown to behave 
as p-s for large momentum where the specific value 
of s depends on the angular momentum state and the 
strength of the interaction. Because of this behaVior, 
a Mellin transformation of the momentum space wave 
function seems particularly appropriate. When such a 
transformation is carried out, the kernel of the new 
equation is found to have a Cauchy-type singularity. 
The choice of a contour of integration for the inverse 
Mellin transformation is made by demanding that the 
wave function be integrable for large momenta and 
that the transformed kernel be Hermitian. The inte­
gral equation may then be reduced to a Fredholm 
equation by a standard method which we describe in 
detail. We are thus able to prove the existence of 
unique solutions for both bound state and scattering 
wavefunctions. 
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H. THE BAKAMJIAN-THOMAS EQUATION FOR 
COULOMB SCATTERING 

We consider two spin-zero fields cp, X of masses m 
and M, respectively, interacting through a Coulomb 
interaction. The Schrtidinger representation is em­
ployed. Free particle states are normalized by 

(p' Ip) = Poi5(p' - p), (1) 

where Po is the free particle energy and i5 is the 
Dirac delta function. This implies commutation rela­
tions of the form 

[a(p), a+(p')] = Poi5(p - p') (2) 

for the operators a(p), b(P) and A(p),B(p) associated 
with the fields cp and x, respectively. For cp we write 

cp(r) = 1 I d
3
p [a(p)e iP•r + b+(p)e-iP.rJ (3) 

(211 )3/2(2)1/2 Po 

and correspondingly for X(r). If tIJ(p, q) is a function 
of the variables p and q referring to two different 
particles, we may introduce a two-particle state vec­
tor l-.Ji) by writing 

l-.Ji) = II ~ ~:q tIJ(p,q)a+(p)A+(q) 10), (4) 

where 10) is the vacuum state vector. One finds 

The Schrodinger equation which we seek is just 

(P,qIHI-.Ji) =i~(p,qllJl), 
at 

(5) 

(6) 

where H is the Hamiltonian of the system. The non­
interaction part of H contributes [(P2 + m 2 )1/2 + 
(q2 + M2)1/2)tJ;(P, q) to the left-hand side of this 
equation, and the Coulomb interaction term is 

H - Z 2 I Pm(r)PM(r') d3 d3 , 
c- e I I r r, r-r' 

(7) 

where Pm and PM are the charge densities of the two 
fields. In terms of the charges e and Ze for the cp 
and X fields (the particles "a" and "A" have charges 
e and Ze, respectively), 

Pm = ie(cp+11+ - 11CP), (8) 

where 11,11+ are the fields canonically conjugate to cp, 
cp+, respectively. The representation of the 11 (r) field 
is 
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71(r) = _i __ 1_ f d3p[a+(p)e- ip •r - b(p)e ip •r ] (9) 
(271)3/2 21/2 . 

Similar expressions describe PM and the X field. 
The evaluation of the Coulomb contribution is 
straightforward. One finds 

(p, qlHc I >J1) 

x = Ze
2 f ~ ~ (p + p')(q + q' ) 

8712 Po qo 0 0 0 0 

x O(p + q - pi - q') tJ;(p' q'). (10) 
(p_p')2 ' 

Since we were immediately interested in pion-helium 
scattering where m'IT « m He, we were led to the 
approximate equation for the case of an infinitely 
massive field X. If Po now denotes only the energy 
of the particle of finite mass, we find 

(p2 + m2)1/2tJ;(p) 

Ze2 d3p' (p + pi ) 
+ -4 2 f -, (pO 1;2 tJ;(p') :::: POtJ;(p)· (11) 

71 Po - p 

This is the equation we will study. 

m. SOLUTIONS OF THE BAKAMJIAN-THOMAS 
COULOMB EQUATION 

This section will be devoted to a study of the general 
properties of Eq. (11)7 when the interaction is attrac­
tive. This restriction will be removed later. A par­
tial-wave decomposition yields 

Ze2 0() (p + pi) 
(p2 + m2)1I2tJ; (p) + -1 dp' 0 0 

I 271 0 PPb 

N2 = 2 - 1 - r da ~
Ze2) 2 0() dp 1 

271 0 p.lo 

(12) 

where Q/ is the Legendre function of the second kind 
and tJ;z(P) is the new wavefunction. If we try to write 
Eq. (12) in standard integral equation form, the result­
ing kernel is not symmetric. To find an equation with 
a symmetric kernel, one may introduce tJ;t by 

The new equation is then 

Ze 2 r co (Po + Po) 
tJ;[(P)=-2-Jo dp' ( ')1/2 

71 PoPo 

Qz([(p2 + P'2 )/2pp']) 
x~----------~~~------~~----~~-

[Po - (p2 + m 2)1/2]1/2[po - (P ' 2 + m2)1/2]1/2' 

(14) 

Equation (14) has a kernel which is not of the Fred­
holm type. To see this, we consider the integral of 
the square of the kernel (the Fredholm norm): 

(
Ze 2)2 100 10() (Po + Po)2 N 2 = - dp dp I ---''-----=--

271 0 0 PoPb 

QH[(P2 + P'2 )/2pp' ]) 
x~----~------~--______________ _ 

I[po - (p 2 + m 2)1/2][Po - (p ' 2 + m 2)1/2]1' 

(15) 

The kernel will be non-Fredholm if the energy Po is 
in the scattering region, because the energy denomi­
nators can then vanish. This difficulty is common to 
scattering integral equations and can be readily re­
moved,8 so we will ignore it. If we set pi = ap and 
take account of the symmetry in p and pi we find 

[(1 + m 2/p2)1/2 + (a 2 + m2/p2)1/2]Q2([(1 + ( 2)/2a]) x z (16) 
[(1 + m 2/p2)(a 2 + m2/p2)]1/21[Po/p - (1 + m 2/p2)1 /2][Po/p - (a 2 + m 2/p2)1/2J ]1' 

As p tends to zero the integral is well behaved; when 
p becomes large, however, the integral diverges loga­
rithmically. The integrand is positive definite and for 
any nonzero region in a the logarithmic divergence is 
present. (Note that when a ~ 1 no trouble arises 
since Qz diverges only logarithmically and is there­
fore integrable.) It should be noted that if we had con­
Sidered the interaction appropriate to the time compo­
nent of a vector meson field of mass Il the argument 
of the function Q z would be replaced according 10 

(p2 + p I 2)/2pp' ~ (p2 + p ' 2 + jl2)/2PP'; (17) 

but similar arguments to those above would show the 
kernel still not to be of the Fredholm type. Since the 
non- Fredholm nature of the kernel is related to its 
large momentum behavior, our next task is to study 
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the behavior of the equation for large momenta. For 
this purpose it is convenient to use the unsymmetric 
form of the integral equation, Eq. (12). Thus for 
Po» Po, 

tJ; (p) ~ -- r dp' 0 0 _ Q r .tJ; (pi). Ze 2 
00 (p + p') P' ~'''2 + P12) 

I 271 .lo P pi P I 2PP' I 
o 0 . (18) 

The integral representation for Ql'i.e., 

1 1 PI(t) 
QI(Z) = 2 f dt --t' -1 z -

may then be used to give 

Ze 2 1 
tJ;1(P) = - - f dtPI(t) 

271 -1 

(19) 
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rOO (Po + Po) p'2!J;Z(p') 

x JO dp' PoPo (P2 + p'2 - 2Pp't) 
(20) 

We now conjecture that solutions of this equation be­
have as p-s for large p. We are thus led to examine 
the two integrals 

Ze2 1 00 dp'(p')2-s 
11 = - 2rrp L diP/(l) ~ (p2 + p'2 - 2Pp't) 

and (21) 
Ze 2 i1 roo (p')2-t 

12 = -~ 1 dtPl(t) vb P6(P2 + p'2 - 2pp'l) 

The integrals may be evaluated by standard contour 
integration methods. Both have branch points at the 
origin; 12 has additional branch points at ± im. We 
thus find that 

and 

Ze 2 
e

i1ft 1" 12 = - -- sinedePl(cose) 
211 2i sin1l ~ 0 

(22) 

dP'(P')2-~ 

X fc P'o(P' _ pei8)(p' _ P-i8)' 

where we have set 

t = cose, (23) 

and C is a contour from + co to + co taken around the 
origin in the counterclockwise direction below and 
above the branch cut which has been taken along the 
real axis from the origin to + co as shown in Fig. 1. 
The integrals in Eq. (21) are well defined in the neigh­
borhood of the origin and at co if 

1 < ~ < 2. (24) 

The integral 11 may be evaluated by the method of re­
sidues. The integrand has poles at arg P' = e, 21T - () 
(the last value obtains since we may not pass through 

p' plone 

im 

c,1 c 
r~-------'--~-----

,~---------------

FIG. 1. Structure of the P' plane together with 
contours used in evaluating integrals. 

the branch cut along the real axis; see Fig. 1). One 
finds for 11> if e is less than 11 /2, 

11 = Ze
2 -!C- f dePI(cose) sin[(2 - ~)(11 - e»). (25) 

2 smrr~ 0 

The integral 12 may be treated in a similar manner 
except that account must be taken of the additional 
branch cuts from im to co and - im to - co. If e is 
again assumed to be less than 11/2 and if I2B repre­
sents the contribution from the branch cuts, one has, 
in the limit P » m, 

Ze 2 p-s 1" 12 = IZB - - -.- dePz(cose) sin[(1 - ~)(11 - e»). 
2 sm1T~ 0 

(26) 
Let us now consider the integral over the branch cuts 
12B • Since we are dealing with a square root singu­
larity, it follows that we need only integrate over the 
portions of the contour which lie in the left plane pro­
viding we double the result. Next let us consider an 
integra1I2B , of the integrand over the path C' in Fig. 
1, which lies in the left-half plane and which connects 
the branch points ± im. Clearly 

(27) 

The contour for I 2B' may be taken along the imagi­
nary axiS, except for a small indentation of radius p 
to the left of the origin which allows one to avoid the 
branch cut to the origin. We thus have 

Ze Z r" . [l· m 
( y2- sdy 

12BI = . vb smed8Pl (cose) (2 2)1/2 21T SIn1T ~ P m - y 

x + C.c. e iwt /2 
) 

(y _ pei(8-w/2)(y + pe- i (8-1f/2) 

i
3W/2 

- p3-f,e i1ft 
w/2 

x . ei~-0mda J 
(m2 + pZe2im)1/2(peim _ pe i8 )(pe im - pe- iO ) 

(28) 

The last integral in Eq. (28) vanishes as p ~ 0 for Re 
~ < 3. Thus one finds in the limit p ~ co, 

Ze 2 l w ~m y2-sdy 
I 2B' ~ - 2 0 sinedep z(cose) 

211 p sin1T~ (m2 _y2)1/2 

x + c. c •. 
[ 

ei1ft/2 ] 

(1 + (y/p)e i (EHr/2))(I_ (y/p)e- i (e-,,/2) 

(29) 
Therefore 12B behaves as p-2 so under the restric­
tions in Eq. (24),I2B does not contribute to the asymp­
totic behavior. Thus 

Ze 2p-f, i" 12 = - -.- dePZ(COSe) sin[(1- ~)(1T - e»). (30) 
2 sm1T~ 0 

If [1 and [2 are now combined, one finds that for self­
consistency a solution whose asymptotic form is p-f, 
requires that 

Ze 2 (" -.- vb dePz(cose){sin[(2 - ~)(1T - e)] 
2 sm1T~ 

- sin[(l- ~)(11 - e)]} = 1. (31) 
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This may also be written as 

(- ~)lZe2 t dBP1(cosB) sin! cos'(~ - 3/2)B == 1. 
slmr~ 0 2 (32) 

The integral vanishes as ~ ~ 2, as it should, since 
otherwise there would be a pole in either /1 or /2 in 
contradiction to the condition (24). 

The integrals in Eqs. (31) and (32) may be evaluated 
in a straightforward manner.9 When I is even, we find 

Ze
2 ± (I)B(l- k + i,k + t) 

217 k=O k 

x!. tan17V2 _ cotnV2 ) == 1, (33) 
\l - 2k + 2 - ~ I - 2k + 1 - ~ 

and when I is odd, 

Ze 2 

2n 
Eo (~)B(l- k + ~,k + %) 

x !. cobrV2 _ tann~/2 )::;:: 1. 
'-Z - 2k + 2 - ~ 1 - 2k + 1 - ~ 

(34) 

In these expressions, the symbol (i) is the usual bino­
mial coefficient and B (x, y) is the beta function of x, y. 

The asymptotic behavior just developed strongly sug­
gests that the Bakamjian-Thomas equation be studied 
by using a Mellin transformation. 10 We now turn to 
that task, which will verify rigorously that the asymp­
totic behavior is indeed given by a solution of Eq. (33) 
or Eq. (34), and, further, will lead to a method for 
obtaining a unique solution of the singular equation 
(12). 

IV. MELLIN TRANSFORMATION OF THE 
BAKAMnAN-THO~EQUATION 

The Mellin transformation and its inverse are defined 
by the equationsll 

00 

Ih(s) == ~ Wl(P)ps-ldP (35) 

(36) 

where C goes from - iOO to iOO. The contour C must be 
chosen appropriately in order to effect a solution. We 
note that from Eq. (36) it follows that the asymptotic 
behaVior of 1f!!(P) as P ~ 00 is determined by the Singu­
larity in If! I (s) with the smallest Re(s) to the right of C, 
while the behaVior as P ~ 0 is determined by the Singu­
larity with the largest Re(s) to the left of C. From 
these relations one finds the transformed integral 
equation 

(37) 

where the kernel Kz(s, s') is given by 

Ze 2 00 00 ps-l(po + PoW 
Kl(s, s') =="'2,; ~ dp ~ dp' (Po - Po)PbP 

x Q ('P2 + P'2)(p')_S'dP'. 
I 2pp' 

(38) 
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The conditions for the existence of Kl(s, s') must now 
be examined. A consideration that the integrals over 
P and P' be convergent at both limits of integration 
gives the requirements 

as P ~ 0, Re(s) > - l, 

as P~ 00, Re(s) < 7 + 2, 
(39) 

as P' ~ 0, Re(s') < l + 3, 

as P' ~ 00, Re(s') > - l + 1. 

It may be noted that the factor (Po - Po)- 1 may be 
expanded in an appropriate manner according to 
whether I Po/Po I is greater or less than 1 and that 
such an expansion will not alter our conclusions about 
the domain of existence of K since each successive 
term is as well behaved at the origin and is better 
behaved at infinity than the one for which Po ::;:: O. 

Alternatively if the kernel K is divided into two parts, 
the first of which,K, is obtained by setting Po == 0 in 
K, and the second is Simply the difference between K 
and K, by such an expansion argument for large P as 
has just been given one sees that the domain of exis­
tence for K is the same as that for K. We find 

Ze2 00 00 

Kl(s, s') ::;:: - 2;- ~ dp ~ dp'ps-2 

X (Po + Po) (p,)-s+iQ ('P2 + P/2) • (40) 
PoPo I 2PP' 

To carry out the integrals, we again replace Qz by its 
integral representation, Eq. (19), to get 

Z2" 00 00 

K1(s, S') == - _e_l sinedBPI(cosB) 1 dp r dp'ps-l 
2n o o-b 

x -+-( 
1 1 ) (P')-s'+2 

Po Po (P' - pe ifJ)(p' - pe- ifJ ) • 
(41) 

Consider now the integral 

00 00 ps-l(p,)-s'+2 
/ (s s') - 1 dp [ dp' _----L.-----'L-!....---
l' - 0 Jo PO(PI _ peiO)(p' _ pe-W) 

eilrsl 00 dp dp'(p,)-s'+2 

::;:: 2i sin17s' ~ Po Ie (P' -- peifJ)(p' - pe- ifJ )' 

(42) 

This is one of the terms in Eq. (41). The contour C is 
the same as that in Eq. (22). We integrate first over 
p' and then over p to avoid the branch cut associated 
with Po at the first integration. The other term in the 
integrand of Eq. (41) is treated by integrating first 
over p and then over p'. Denoting this second term by 
/2' we have 

00 00 (P')-s'+2ps-l 
I (5 s') == 1 dp r dp' . 
2' 0 -b Po(p - p'eifJ)(p - p'e-,f) 

= .e- is1f lOO dp' (P,)-s'+2 
2i sinn s 0 Pb 

ps-l 
x f dp • 

c (p - p'eifJ)(p - p'e-ifJ ) 
(43) 
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For 11 , we find 

11 sin[(2 - S')(1T - e)] 100 dp 
11 (s, s') = -- - ps-s'. 

sin1Ts' sine 0 Po (44) 
If this integral is to converge, we see that C must be 
chosen so that 

Re(s) < Re(s') < Re(s + 1). (45) 

The remaining integration can then be performed to 
give 

() 
11 sin[(2 - S')(1T - e)](m) 8-5' 

Iss' = - -
1 , 2 sin1ls' sine 2 

x B (s' ; s, s' - s + 1). (46) 

The second term 12 may be evaluated in the same 
way. The result is 

_ -....:.:...7T_ sin[(1 - S)(7T - e)](m) s-s' 
12 (s,s')= 

2 sin1ls sine 2 

x B (s' ; s ,s - s' + 1). (47) 

In the last two equations,B denotes the beta function. 
Equations (46) and (47) may now be used to evaluate 
the expression for 1(/(s, s'): 

K (s s') = -- - B -- s - s' + 1 - Ze 2 ~m) s-s' (s' - s ~ 
/, 4 2 2' 

x f dep/(cose) x sin[(2 - S')(lI - e)] 
o sin1ls' 

sin[(1 - s)(11 - e)] (48) 
sin1ls 

We thus find, when 1 is even, 

- Ze 2 (m) 8-5' (s' - S ~ K (s s') = - - B -- s - s' + 1 
I' 4112 2' 

x ± (!)B(l-k + ~,k +~) 
k=O 

X I. tan 1IS' /2 _ cot 1Is/2 ) (49) 
\Z - 2k + 2 - s' Z - 2k + 1 - s 

and when Z is odd, 

1( (s s') = Ze 2 {m\ 8-s'B (s' - s s - s' + 1\ 
/' 411 \2"; '\ 2' 'j 

x to G)B (1 - k + L k + ~) 
x ( cot 1IS' /2 _ tan 1Is/2 ~. (50) 

1 - 2k + 2 - s' 1 - 2k + 1 - sl 

Poles of the beta functions relate to the conditions of 
Eq. (45). The reader may note that the even-odd 
alternative forms for K1(s, s') have terms which pro­
duce poles for values of s or s' in the regions which 
are not excluded by the inequalities in Eq. (39). 
These poles are canceled when the entire series in 
k is included. For example, when 1 = 1, we find 

K\ (s, s') <X cot7Ts' /2[(3 - s')-l + (1 - s')-l] 

- tan1Ts/2[(2 - S)-l - s-l]. (51) 

The poles at s' = 2 and s = 1 from the cotangent and 
tangent are thus canceled by the zeroes in the 
brackets at these values. Hence,Kz(s, s') for 1 = 1 is 
analytiC for - 1 < Res < 3, and 0 < Res' < 4. 

We are now in a position to begin a determination of 
the contour of integration C. Firstly, the contour may 
be taken to run parallel to the imaginary axis from 
- iCfJ to iCfJ. It is to be noted that the conditions for 
the existence of K/(s, s') do not at first lead us to an 
integral equation of the usual type for 1/I/(s), since we 
have derived an equation which relates 1/I/(s) to 
values of 1/I/(s'), where the set of values of s is dif­
ferent from the set of s' values because of the re­
quirement in Eq. (45). However, we may deform the 
s' contour by shifting it to the left so that it half en­
circles the pole contained in the beta function at s' = 
s or we may increase Re(s) to Re(s'), again taking 
the contour to half encircle the pole at s' = s. In the 
neighborhood of this pole, 

(52) 

where Rz(s) is given by 

Ze 2 
I (I) 1 1 R/(s) =- ~ k B(l-k + 2,k + 2) 

21T k=O 

x [tan1ls/2 _ cot7Ts/2 1 (53) 
LI- 2k + 2 - s 1- 2k + 1- sJ ' 

when l is even, and by 

Rz(s) = Ze
2 ± (k1)B(Z- k + ~,k + ~) 

21T k=O 

X ( cot7Ts/2 _ tan1Ts/2 \ 
1 - 2k + 2 - s 1 - 2k + 1 - sl ' 

when 1 is odd. 

We may now write the kernel Kz(s, s') as 

where the kernel 

is not singular at s' = s. 

This leads to the singular integral equation 

P jS+ioo Rz(s) 
+ -. . --1/Iz(s')ds', 

27Tt S-tOO s' - S 

(54) 

(55) 

(56) 

(57) 

where P denotes a principal value integral. There is 
also an "associate" integral equation to Eq. (57); 
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RI(s)l/If(s) 1 15+iOO _ 
l/Ia(s) = + - . ds' Kg (s s')l/Io(s') 

I 2 21fi 5-,00 11, I 

P j5+i OO R (S') 
- -. . ds' _I - l/If(s'), (58) 

21ft 5-,00 S' - S 

where 

Kfl(s, s') == K[ (s's) + Rz(s')/(s' - s). 

Our method of solution of Eq. (57) consists of first 
investigating solutions of a singular equation, the 
"dominant equation." We then derive a new integral 
equation for the problem which incorporates Kil • 

This new equation is of the Fredholm type; its 
development will be given later in this section. 

We shall conclude this section with a qualitative dis­
cussion of the solutions of the Bakamjian-Thomas 
equation. For simplicity, we consider the case when 
1=0. In this case, Eq. (53) then becomes (when we 
drop angular momentum subscripts) 

R(s) = ze2 (tan1fs/2 _ COt7rS/2). 
2 2-s I-s 

(59) 

If we write /(s) for the term involving KI , we have 

This equation can be written as KOl/l = /, where KO is 
defined to be the dominant part of the original kernel 
K. 

An equation of this form was first treated by Carle­
mann and is extensively discussed in the books by 
Muskhelishvili 12 and Pogorzelski. 13 We follow the 
discussions given by these authors. First, we intro­
duce the function 

H(s) =...!-.l I/I(s')ds', 
21fi c s' - s 

(61) 

where the contour C goes from - ioo to iro. We can 
look at H(s) as a single-valued function in the s plane, 
cut along C. If we denote the region to the left of the 
contour by S+ and that to the right by S-, we can 
obtain two functions H±(s), analytic in S±, respec­
tively, according to whether s lies in S+ or S-. These 
two functions can then be analytically continued be­
yond the cut C. Because of Cauchy's theorem, the 
contour C can be varied without affecting H+(s) or 
H-(s) unless a singularity in the integrand is en­
countered on C: i.e., I/I(s') is singular, or C passes 
through s. If C is chosen to pass through s, we have 

(H(s - €) + H(S + €»(~o = H+(s) - H-(s) = l/I(s), 

(H(s - €) + H(s + €»€->o = H+(s) + H-(s) (62) 

= P J l/I(s')ds' • 
1fi s' - s 

These relations reduce Eq. (60) to an algebraic equa­
tion14: 

[1- iR(s)J[H+(S) - H-(s)] 

=/(s) + iR(s)[H+(s) + H-(S)]. (63) 
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To solve this equation, we begin by conSidering the 
solution of the equation with / = 0 and denote the 
solutions by Hfj. We have 

or 
[1 -R(s)]Hd(s) = Ha(s) 

H(j(S)/Ha(S) = 1/[1-R(s)]. 

Upon taking the logarithm of both Sides, one finds 

InHd(s) - InHa(s) = - In[I-R(s)]. 

If one now introduces 

InH (s) = __ 1 lln[I-R(s'») 
° 21fi c s' - s ' 

(64) 

(65) 

(66) 

(67) 

this effects a solution of the discontinuity equation 
(64) for the homogeneous equation. 15 From Eq. (67) 
one sees that H"5(s) are neither Singular nor zero in 
the regions S±, respectively. 

A solution of the inhomogeneous problem is achieved 
by using Eq. (64) to replace 1 - R in Eq. (63). Thus 

or 
[Hil(S)/Hd(s)]H+(s) = H-(s) + /(s) 

H+(s) _ H-(s) = /(s) 

Hd(s) Hil(s) Hil(s) 

If we now introduce 

H(s) = F(s)Ho(s), 

we obtain 

F+(s) - F-(s) = /(s)/Hil(s), 

which can be formally solved by 

F(s) = _1 1 /(s')ds' 
21fi c (s' - s)Hil(s) 

(68) 

(69) 

(70) 

(71) 

and we see that F± (s) are regular in the regions S±, 
respectively. The solution of our equation for 1/1 is 
then obtained using Eqs. (62) and (69). 

We now continue consideration of the choice of con­
tour for our problem. For the 1 = 0 case, we have 
the conditions 

0< Re(s) < 2, Re(s) < Re(s') < Re(s + 1), 

1 < Re(s') < 3. (72) 

At the various limiting values for s, s', there are 
singularities inKo(s,s'),of which the pole at s = s' 
has already been made expliCit in the singular inte­
gral equation,Eq. (57). We note that l-R(s) can be 
given an infinite product representationI6 in the form 

1 - R (s) = Ii (S - ~n) , 
n=-oo S - n 

(73) 

Since R(s) has poles at all integers,R(s) ~ 1 as 
IIms I ~ ro, and for each n there is an s = ~ .. such that 
R (~n) = 1.17 Further, as I n r ~ ro, one finds 

~n -n ~ Ze 2/1fn, (74) 
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which guarantees that the infinite product converges. 
Finally, R (s) is symmetric about s = %, so that 

RG+t)=RG-t). (75) 

Thus the complex s plane shows a pattern of poles and 
zeroes as indicated in Fig. 2 (for Ze 2 < 0). 

Let us now note the following facts: The function Ht(s) 
is analytic and nonzero in S+, while "o(s) in analytic 
and nonzero in S-. All three contours Co' C l , and C 2 
of Fig. 2 satisfy the conditions on s'.1 8 We do not con-

S plane 

-3 -2 -I o 2 3 4 

FIG. 2. Structure of R(s); poles are represented by x, zeroes by 
( . At first sight Co' C 1 • C2 represent possible contours of inte­
gration but only Co is really allowed. 

sider contours in which Re(s) < t because such con­
tours can either be distorted so that Re(s) > ~ or 
there will be a singularity in I/I(s) for Res < ~. The 
former case is of no interest, while the latter one 
would lead to a wavefunction in momentum space 
which is not square integrable, and is therefore ex­
cluded. If we consider Co, we find from Eq. (67) that 

(76) 

while for C2 

(77) 

On the other hand, for contour C 1 the integral in Eq. 
(67) is singular, since the phase of the logarithm does 
not go to zero as Ims ~ co, so Ho(s) cannot be defined 
by Eq. (67). One could attempt to use 

H~l)+(S) = (s _ 2) n (s -n ) 
n=3 S - ~ 

and n 

Hb1
)-(s) = (s - ~2) nErLJ (: = !n) , 

(78) 

since this separation of 1 - R (8) satisfies Eq. (65). In 
this case, if we conSider the" solution" of the homo-

geneous equation for I/I(s), we see that as 11ms 1 ~ co, 
I/I(s) ~ (~2 - 2). But this asymptotic behavior is not 
allowed, since the principle value integral in Eq. (60) 
is not well defined; in fact, we will show that the con­
tour C 1 is not acceptable. If Ze 2 > 0, the relative 
positions of the poles n and zeros ~n in 1 - R (s) are 
reversed. In this case, we obtain a valid solution of 
the homogeneous equation using C 1> in which 

Hit(s) = 1 n (S - n ) 
(s - ~2) n=3 S - ~n 

and 

(79) 

HQ(s) = _1_ it (S - ~n) . 
(s - 2) n=-OO S - n 

(80) 

Thus the solution for I/I(s) will not be unique, because 
an arbitrary amount of the solution of the homoge­
neous equation can always be added to a particular 
solution. We will return to a further consideration of 
Co, C 2 subsequently. 

As was seen from Eq. (36), the behavior of I/I(P) for 
P ~ co is determined by the properties of I/I(s) in S-. 
In this region,HQ(s) and F-(s) are analytic, so it is 
convenient to express the solutions in terms of them. 
In S- it is convenient to represent H+(s) as 

H+(s) = Ho(s) (F-(S) + /(S»). 
1-R(s) HQ(s) 

(81) 

Thus if 1- R(s) vanishes, I/I(s) will have a pole; Le., at 
points s = ~n' By construction we also know that /(s) 
has a pole at s = n, but here R (s) also has a pole 
which cancels the singularity, so that I/I(s) is regular 
at n. Thus the asymptotic behavior of I/I(p) will be 
dominated by the smallest ~n' ~:in in the S- region; 
i.e., 

I/Il(P) ~p_t,~in. 

We now come to the deciSive part of our investigation, 
the complete solution of Eq. (57). This depends on the 
existence of solutions of our equations,19 which in 
turn can be determined using the Vekua theory of 
Singular integral equations,20 which we will now 
briefly recapitulate. Vekua's theorem states that, 
under certain conditions, each singular integral equa­
tion of the form 

K¢ == A(s)1'(s) + ~ 1 ds' N(s, s')/(s') =/(s) (82) 
1ft c s' - s 

is equivalent to a Fredholm equation with a complete­
ly continuous kerne1. 21 The conditions which must be 
imposed are the HOlder relations: 

and 

IA(s) -A(s')1 < const Is - S'l n , 

1 Its) - /(s') 1 < const Is - s'l n, 

(83) 

IK(s, s') - K(s", s" ')1 < canst [Is - s"ln + Is' - s" 'In], 

where 0 < n ~ 1. Of central importance in the Vekua 
theory is the index K, 

== ~ A ln~(S) -B(S») _ ~ A (A(S) -B(S») K...,.C - ""'c arg • 
21fi (s) + B(s) 21f A(s) + B(s) 

(84) 
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Here, 

B (s) = N (s, s) (85) 

and the notation Ac is meant to indicate the total 
change in phase of (A -B)!(A + B) as we traverse 
the entire contour C. In our case,A(s) = 1 - M(s) 
and B (s) = - M (s), and the contours Co and C 2 give 
K = 0, while C1 gives K = ± 1 according to whether 
Ze 2 ~ O. We have seen that only for Ze 2 > 0 and the 
contour C 1 is there a solution of the homogeneous 
equationKO¢ = 0 in which ¢(s) ~ 0 as IImsl ~ 00. In 
order to effect the reduction of the singular equation 
to Fredholm form, the "dominant" operation 

KO¢ = A(s)¢(s) + B(S!P J ds' ~ (86) 
1ft C s' - s 

and its "associate" operation22 

KO'¢ =A(s)¢(s) - ~ J ds' B(s')cp(s') (87) 
1ft C s' - s 

are introduced. If K is the index of KO, then K is said 
to be the index of the original equation. Since the sign 
of the imaginary unit has been changed in Eq. (87), - K 

is the index of KO'. A theory of Eq. (82) was first 
developed by Carlemann. 23 If the index of Eq. (82) is K 

and 
K> 0, (88) 

there are K linearly independent solutions of the homo­
geneous equation of the form 

(89) 

where PK(s) is a polynomial in s of degree K. On the 
other hand, for K ~ 0, the associate operation in Eq. 
(87) has a K ~ 0, and there are then no nonvanishing 
solutions of KO' ¢ = 0 which tend to zero at infinity. 

It can be shown by use of the Poincare-Bertrand 
transformation24 that KO' is a "regularizing" operator 
for the kernel K; that is, the kernel KO'K(= fc KO'(s,s") 
K(s", s')ds") is completely continuous, although K is 
not. Thus if K ~ 0, solutions of the equation K cp = f 
can be sought via the regularized equation 

for any kernel K and its adjoint, if we have solutions 
cp, tf; such that 

Kcp =f 
and 

K'tf; = 0, 

then the general relation 

J tf;K cpdsds' = J cpK'tf;dsds' 

requires that 

J tf;fds = O. 

(93) 

(94) 

(95) 

(96) 

This is, of course, just the generalization of the fami­
liar property which is known from the theory of Fred­
holm operators; that is, a necessary and sufficient 
condition for the solution of an inhomogeneous Fred­
holm equation is that the driving term be orthogonal 
to the eigenfunctions of the transposed operator (or 
Hermitian conjugate operator if orthogonality in­
cludes complex conjugation). We now remark that, in 
analogy to the Fredholm case, the condition (96) is 
also sufficient to guarantee a solution of Eq. (93): 
First, suppose that K is positive or zero. We consider 
the solution w of the Fredholm equation 

(97) 

or, equivalently, 

K'Kow = O. (98) 

Since the solutions of Eq. (98) always satisfy Eq. (94), 
KOw must be a linear combination of the tf;. According 
to the Fredholm theory, however, a necessary and 
sufficient condition that there be a solution of an in­
homogeneous Fredholm equation is that the inhomo­
geneous term be orthogonal to all solutions w of the 
homogeneous equation, with transposed kernel. Thus 
a sufficient condition for the solution of Eq. (90) is 

Thus, if Eq. (96) holds, there is a solution of Eq. (90) 
and hence of Eq. (93), and sufficiency is proved. 

(90) If K is negative, we introduce the solutions 'Y of the 
transposed Fredholm equation 

for which the usual Fredholm theorems apply. Since 
KO'tf; = 0 has no nontrivial solutions, no extraneous 
solutions are introduced. 

If, on the other hand, K is negative, one may define 

(91) 

and form the equation 

(92) 

which may be shown to have a completely continuous 
kernel. The solution of the original Eq. (82) is then 
obtained by quadrature from the solution of this equa­
tion. 

The relevance of the above theorem to our work de­
pends on the following theorems. We first note that 

J. Math. Phys., Vol. 13, No.3, March 1972 

(100) 

or, equivalently, 

KOK''Y = O. (101) 

The Fredholm theory shows here that if 

J /yds = 0, (102) 

one may find a solution of Eq. (92). This allows one 
to construct ¢ by quadrature [Eq. (91)]. Since the 
dominant equation for K negative has no nontrivial 
solutions those of Eq. (101) must be linear combina­
tions of those of the homogeneous associate equation 
(89). Thus the condition of Eq. (96) is sufficient in this 
case also. 
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A further theorem has been proved by Vekua: The dif­
ference between the number k of linearly independent 
solutions of the singular equation KcfJ = 0 and the cor­
responding number k' for K'I/I = 0 is equal to the in­
dex K of the first equation. This can be shown as fol­
lows: We assume that K ? 0 without loss of generality, 
since if K < 0 the roles of K and K' can simply be in­
terchanged. Then we know that the equation 

(103) 

is completely equivalent to 

(104) 

and therefore the latter also has k linearly indepen­
dent solutions. From the Fredholm theory we know 
then that 

K'Kol/i = 0 (105) 

has k linearly independent solutions as well. Since 
KOI/I = 0 has K linearly independent solutions, it fol­
lows that k' = k - K. 

Let us now apply the foregoing analysis to our equa­
tion. As has been seen, the choice of contour C affects 
the resulting K. We note that if K is positive or zero, 
except for certain eigenvalues there are no nonzero 
solutions of the homogeneous adjoint equation. Hence 
there are no restrictions on the function f as indica­
ted by Eq. (4). If K is negative, however,! cannot be 
arbitrary. Thus the contour must be chosen so that K 

is positive or zero. Thus, if Ze 2 > 0, the path C1 must 
be excluded since there will not generally be a solu­
tion of the equation. On the other hand, if Ze 2 < 0 for 
physical reasons, C1 again is excluded since the solu­
tions in this case would not be unique. Thus we are 
left with the possible contours Co and C 2 • 

Again let us consider 1 = O. The generalization to 
arbitrary 1 is Simple. We have seen that the behavior 
of I/I(p) as P ~ 0 is determined by the highest singu­
larity in S+. Thus it is convenient to express the solu­
tion of Eq. (60), I/I(s), in terms of Ht; and F+: 

I/I(s) = R(s)Ht;(s)F+(s) + f(s). (106) 

The singularities of I/I(s) in S+ are then found either in 
R(s) or f(s), or in both. Thus there may be poles in 
I/I(s) at all of the integers to the left of C. If Eq. (37) 
is used to continue I/I(s), however, it is seen that only 
the singularity in s associated with K(s, s') produces 
a singularity in I/I(s), and hence if Co is chosen, there 
will be a pole in I/I(s) at s = 0 (and at the negative even 
integers). On the other hand, if C2 is chosen, it is 
convenient to first let Re(s) ~ Re(s') on C 2 , since we 
have the analytic continuation explicity of K(s, s') for 
Res? 2, and then obtain a solution of the equation on 
C 2 , and finally use Eq. (37) to continue back to s = 2. 
We thus find a pole at s = 2, and 

(107) 

This behavior is not acceptable, however, since the 
wavefunction would not be normalizable, and so we ex­
clude the path C 2 from further consideration, and we 
have a unique solution to the singular equation, Eq. 

(12). Since we are thus restricted to the path Co we 
may ask whether there is some especially appropriate 
path. It is shown in Appendix A that if Re(s) = Re(s') 
= ~, the kernel of the integral equation satisfies a 
hermiticity condition, and so this choice seems to be 
called for. 

We shall close this section by noting that there is a 
maximum value for - Ze 2 for which a unique solution 
of Eq. (12) is possible. Again for 1 = 0, it is easilr 
seen that R(s) is real for Ims = 0, and for Res = 2' In 
the latter case, 

Ze 2(1- i tanh(1T/2)sr 1 ) R(s) =-- 0 __ - + C.c. , 
2 1 + i tanh(1T/2)sr ~ - iSr 

(108) 
where s = ~ + is!, As Isrl ~co, 

(109) 

On the path along which R (s) is real going from s = 2 
to either s = ~ ± ico, IR(s)1 is a monotonic decreasing 
function going from co to 0, and if Ze 2 < 0, there will 
be a point ~2 on the path at which25 

This point ~2 will only have Im(s) = 0 if 

R(~) < 1, 

that is, 

(110) 

(111) 

(112) 

If this condition is not satisfied, the points ~l and ~2 
become complex conjugate pairs and the contour C 
and solution I/I(s) are not unique. The situation is 
completely analogous to that with the Dirac equation, 
for which there are too many acceptable solutions 
also if Ze 2 is too large. 26 The problem raised here 
is only of mathematical interest, however, since a 
large Z nucleus would necessitate a form factor to 
describe its spatial extent and the potential for large 
P would be cut off, in contradistinction to the point 
particles dealt with here. Thus we will not pursue 
this case further. 

The Dirac equation may also be dealt with using the 
Mellin transformation technique. In that case it is 
found that R(s) is a quadratic function of s and there 
are only two possible ~i' A brief account of the treat­
ment of the Dirac equation is given in Appendix B. 

V. MOMENTUM SPACE INTERPRETATION OF THE 
K o KERNEL 

In the preceding section, we have provided an analysis 
of the non-Fredholm Bakamjian-Thomas equation 
which leads to a unique solution. Although this pro­
vides a mathematically satisfactory solution, its signi­
ficance is probably somewhat obscure. In the present 
section, we will provide an alternative momentum 
space treatment which is closely related to the Carle­
mann approach in Mellin space, but which gives direct 
insight into the above results. 

Since the non-Fredholm behavior of the equation is 
associated with high momenta, one might try to sepa-
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rate the kernel into an asymptotic part and a remain­
der. Thus we write Eq. (12) as 

Ze2 00 (p + p') (P2 + P'2) 
!/Il(P) = - ~ ~ dp' p2 Q1 2pp' U(P')!/Il(P') 

Ze 2 
00 dP'( (p + P' ) + __ ~ P'_ 0 0 

21T P Pb(Po - po) 

(p + P'») (p2 + P'2) 
+ U(p') PP' Ql\ 2PP' !/Il(P'), (113) 

where U(p) is zero for P < 1, and is one for P ;" 1. 
Let us consider the kernel in the first integral to be 
K 0 (p, P' ), and the balance of the right -hand side as if 
it were an inhomogeneous term f(P). We thus look 
for solutions of the equation 

!/I(p) = J dP'Ko(P,P')!/I(P') + f(P). (114) 

The step function U must be introduced because other­
wise there would be no solution of Eq. (114) because 
of the behavior as p, P' ~ O. 

Clearly the kernel Ko is of such form that we can 
write 

This equation can be solved in two ways: If a new 
variable x == lnP is introduced, Eq. (115) is converted 
into a Wiener-Hopf equation which can be solved by 
known techniques. 27 On the other hand, if a Mellin 
transformation is carried out as in Sec. IV, we get 

!/I1(S) = ~ 1 ds' F(s)!/Iz(S') + Its), (116) 
21TZ C S' - S 

where Re(s' - s) > O. This equation can be brought to 
the form of Eq. (57), and is easily seen to be identical 
to it. Thus the Carlemann solution of this equation 
corresponds to finding a solution of the inhomogene­
ous Eq. (114) to remove the non-Fredholm term 
Ko(p,P'). 

In obtaining Eq. (113), we essentially took the asymp­
totic form of the kernel for P,P' ~ 00, and then multi­
plied the kernel unsymmetrically by U(p'). If, on the 
other hand, we had multiplied by U(p), the only change 
which would occur would be that in Eq. (116}-F(s') 
would appear instead of F(s). 

VI. CONCLUSION 
In this paper we have given arguments which lead to 
an approximate wave equation for spin-zero particles. 
This equation has been studied for the case of an in­
teraction which is the time component of a vector 
field. A simplification was afforded by assuming one 
of the particles to be infinitely massive. Because of 
the nature of the interaction the Schrodinger integral 
equation is singular so that the Fredholm theory does 
not immediately apply. We have given a simple dis­
cussion of the nature of the solutions to be expected 
for our equation and have then gone on to rigorously 
show that a unique solution may be achieved if the 
potential is repulsive or the coupling constant is not 
too large. We have also gone beyond the considera-
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tions of this paper to construct explicit numerical 
solutions for both bound state and scattering problems 
for the case when l = O. Because of the length and 
complexity of this paper and the special techniques 
which are required to effect a numerical solution, we 
will report these results elsewhere. 

APPENDIX A: HERMITICITY OF THE MELLIN 
TRANSFORMED EQUATION 

In this section we shall show that the kernel in the 
Mellin transformed integral equation is Hermitian if 
the contour C is taken to lie along Re(s') = %. For 
this development, we divide the kernel into two parts: 

Kz(P,P') = KI(P,P') + Kf(p,p'), 

where [see Eq. (40)] 

(AI) 

K (p,p') = _ Ze
2 

P' (Po + Pb) Q (P
2 

+ P'2) (A2) 
I 21T P PoPb I 2pp' 

and 

KR(p p') - _ (1 _ (POPb)1/2 ) K ( ') 
I ,- (Po _ PO)1/2(P

O 
_ Pb)1/2 I p,P • 

(A3) 
This division separates K I into a part which has a 
Mellin transfo..!.m that is regular at s = s' ,Kf, and a 
singular part K I for which we alre~y have the trans­
form explicity. The singularity in KI(s, s') for s ~ s' 
arises from the asymptotic behavior of K/P,P') for 
large p, p'. If we set P' = ap in Eq. (41), we find 

- Ze211f KI(s, s') = - -- de sine PI(cose) 
21T 0 

1
00 a2-s' 

x da -----=:....----
o (a - ei8)(a - e-iB ) 

x ~oo dp PS-s'[(p2 + m2)-1/2 

+ (a2p2 + m2)-1/2]. (A4) 

Thus, the integral over P diverges as P ~ 00, unless 
Re(s - s') < O. If we use the same approach to 
Kf(s, s'), however, as P ~ 00 the terms involving Po and 
Pb are now of order p-2, and hence Kf(s, s') is regular 
ats=s'. 

To investigate the hermiticity condition for the kernel, 
we convert the transformed integral equation to one 
in real variables. Thus we set 

and (A5) 
s' = SR + isI, 

so that the integral equation becomes (we do not ex­
pliCitly exhibit the dependence on s R' which now be­
comes a parameter in the equation) 

1. P JOO , R I (isI)!/Iz(SI) 
!/Iz(s/) = "RI(ZSf)!/II(S/) + -. dSf ----=---'''---''---=-

21Tt -00 S1- Sf 
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The K~l part of the kernel considered as a function of 
S 1> S j can easily be shown to be He rmitian for S R == 1. 
We begin by noting that the transform can be written 
as 

K~I(SR + iSn sk + isj) == t'dP t'dP' o 0 

where 

(We only consider bound states, so Po < m.) Then we 
find 

(A9) 

in which Eqs. (A 7) and (A8) have been used, and the 
dummy variables P,P' have been interchanged. Thus, 
if s R == ~, we see that 2 8 as a function of the real vari­
abIes s I' S 1, 

K R (3 +. 3 .,) KR (3 + . , 3 .)* 11 2 IS1,2 + [SI == 112 IS/l2 + lSI , (A10) 

so that K~I is Hermitian. We must now look more 
closely at the singular kernel. We consider the case 
in which 1 is even. Choosing SR == t we then find from 
Eq. (49), 

_ Ze 2(m)i(SI- Sj) (i(Sj - sj) \ 
Kl(S/lS~)=4n2 B 2 ,i(SI-S~)+lj 

x ± (k)B(Z-k + t,k + t) 
k=O 

(
1 - i tanh(1Tsj/2) 1 x 0 __________ __ 

1 + i tanh(1Tsi/2) 1- 2k + {- is; 

1 + i tanh(1Ts /2) 1 ) 
+ 0 1 , 

1-itanh(1Ts/2) 1-2k+ 2 +is 1 

(All) 

in which the second term in the bracket is obtained 
from the cot1Ts/2 term in Eq. (49) by interchanging k 
and 1- k in the summation over k. From Eq. (116) 
one can easily see that 

(A12) 

and that R I (S I)' which is the residue of J{ 1 in the pole 
of the beta function at s' == s is real. Thus we have a 
Hermitian kernel for the equation. It may be men­
tioned here that the Fredholm kernels obtained in the 
Vekua theory do not satisfy the hermiticity require­
ment. This occurs because of the lack of symmetry in 
the choice of Ko, for example, not from the singularity 
ats'=s. 

APPENDIX B: MOMENTUM SPACE ANALYSIS OF 
THE DIRAC EQUATION 

In this appendix we apply the Mellin transformation 
technique to the solution of the familiar Dirac equa­
tion for a spin- i particle in a Coulomb field. The con-

ventional discussion29 is based on a study of the in­
dicial equation of the differential equation for this 
problem in coordinate space and involves boundary 
conditions at the origin. 

Let us now consider the nature of the solutions of this 
equation in momentum space: 

Z 2 d3 ' (crop + (3m)tJ;(p) + _e_ J P tJ;(p') == PotJ;(P). 
21T2 (P _ p')2 

(B1) 
The usual solutions of the Dirac equation involve the 
operator 

k == (3(cr oL + 1), 

which has the eigenvalues ± (j + i), since it commutes 
with the Dirac Hamiltonian. If we write 

cr ==p1cr, 

Eq. (B1) becomes 

Ze 2 J d3 p' (Plcr oP + (3m)tJ;(p) + - tJ;(P') == PotJ;(p). 
21T2 (p - p')2 

(B2) 
We choose 

{3 = (1 0), 
o -1 

(

crop 
crop = 0 

where each of the elements in a matrix is a 2 x 2 
matrix and the corresponding (J' s are Pauli spin 
matrices. 

An angular momentum decompoSition can be achieved 
by setting 

m _ (YJ':j-l/2(P}F j (P) ) 
tJ;. - , 

J Yjj+lI2 CP )Gj (P) 
(B4) 

where Y ry is an eigenfunction of total and orbital angu­
lar mocientum of eigenvalues j and 1, respectively, 
and of j z = m, and p is a unit vector in the direction 
of p. In the first place this function is an eigenfunction 
of k, since30 

Now consider the effect of the operator cr·p on the 
state Yr'l' We set 

To characterize this state we note that 

(J2, crop) = 0, 

(J 3' aop) ::::: 0, 

(L2, crop) = 2crop + 2a opcr oL. 

Since 

cr·L = J 2 - L2 - t 
we find that 

(B5) 

(B6) 

(B7) 

(B8) 
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L2y = [2j(j + 1) - l(l + 1) + 1]Y. (B9) pG/p) + mFj(p) 

If 

I . 1 = J -:- 2, 

the new eigenvalue is j + L and when 

l = j + L 
the new one is 

l = j -1. 

Choosing the conventional Clebsch-Gordon coef­
ficients, we may write 

m _~ m 
Yjj+1/2 - P Yjj-1/2 

and (B10) 

m _~ m • 
Yjj-1/2 - P Yjj+1/2 

If we now substitute Eq. (B4) into the Dirac equation 
(B2), we have, denoting a unit vector by p, 

pG j(P)Y}j-1/2(P) + mFj (p)YJ'j-1/2(P) 

Ze 2 J d3p' ~ + - - F.(p')ym -1/2(P') 
27T 2 (p _ p')2 J JJ 

= POFj (P)Y}j -1/2 (p) 
(Bll) 

and 

PFj(p)y J'j +1/2($) - mG j(P)Y J'j + 1/2($) 

Ze 2 J d3p' -+ - - Gj(P')YJ'J+1/2(P') 
27T 2 (p - p')2 

= PoGj (P)YJ'j+1/2(P). 

To elimi,!late the angular functions, we multiply by 
YJ1-1/2(P)* and integrate over solid angle. We use the 
relations 

and (BI2) 
GO 

(z - ttl = ~ (2l + l)Qz(z)P z(t) 
l=O 

and the normalization condition. The interaction term 
in the first member of Eq. (Bll) is 

We thus obtain the equations 

J. Math. Phys., Vol. 13, No.3, March 1972 

+ Ze
2 
{' P' dP'Q._ (p

2 + P'2)F.(P' ) = P F.(p) 
7T 0 P J 1/2 2PP' J 0 J 

and (B14) 

pFj(p) - mGj(p) 

Ze2 (ex) p' (P2 + P12) + - Jo - dP'Qj+1/2 Gj(P') = PoGj(P). 
'IT P 2PP' 

Equation (B14) may be rewritten as 

Ze 2 rex) p'dp' 
F·(P) = - J~ 

J 7T 0 P(P~ _ p~) 

x [(Po + m )Qj-1/2Fj + PQj+1/2G j] 

and (BI5) 

Ze 2 lex) p'dp' 
G.(p)=-

J 11 0 P(P~ _ P~) 

x [PQj-1/2 Fj + (Po - m)Qj+1/2]' 

The arguments of the Legendre function have been 
suppressed. 

We now make a Mellin transformation on Eq. (B15): 

F.(s) = rex) pS-1F.(P) 
J Jo J 

and (BI6) 

Gj(s) = f' p s - 1G/P). 

For convenience we use the same symbols for the 
functions and their transforms. In matrix notation 
this leads to the integral equation 

1tt(s) =~ f K(s,s')ds', 
27Ti c 

where 
. Ze2 rex) rex) p s-2(p,)-s,+1 

KJ(s s') = - J~ dp L dp' '--~-"--
, 7T 0 0 (pa - pal 

(Po + m)Qj-1/2 PQj+1/2 

x 

(B17) 

(Po - m)Qj+1/2 

(B1B) 

The integrals may be evaluated by the methods used in 
the foregoing paper. If K is conventionally labeled 
according to the scheme 

Kit Ki2 
Kj = 

K~l K~2 

we find the following: If - 1 < Re(s - s') < 1 and 
- j + ~ < Res' < j + !, we find 

(B19) 
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i-1I2( . 1 B( . k k 1 ) 
S .(S') == 6 J - 2) J - , + 2 

] k=O k (j - 2k + ! - S')' 
(B21) 

K = (m 2 _ P~)1/2 
and 

I _ (- 1)j-1/2[1- (- 1)j-1/2 COS1TS'] 
C .(S ) - • 

J sin1T s' 
(B22) 

Thus, if j -1 is even, Cj(s') = tan1TS' /2, and if j -1 is 
odd, C j (s') = - cob s' /~. The other elements of K are 
easily obtained from Ki1 (s, s'). Thus 

Ki2(s, s') = Kil\s + 1, s')/(Po + m), 

K~1 (s, s') = Ki1(s + 1, s')/(Po + m), 
and 

j , (Po - m) j+lt , 22(s, s ) = Kll ~s, S ). 
Po + m 

(B23) 

It is seen that the integral equation is of the singular 
type since it has a pole at s = s'. 

In analogy to the B-T equation, the integral equation 
can be written 

1- R(s) 1J;(s) = £.1 R(s) 1J;(s')ds' 
2 21Ti c s' - s 

+ ~ 1 K 1 (s, s')1J;(s')ds', 
21Tt c 

(B24) 

where K 1 is a regular 2 x 2 matrix and R (s) is the 
residue of Kat s' = s. A singularity in 1J;(s) will now 
occur if the matrix [1- R(s)] is singular; i.e., it has a 
zero determinant. From Eqs. (B20) and (B23), we find 
that only K 12 and K 21 have poles at s = s', so that 

Z 2 i+1I2(. !')B(' k lk+!.) R 12 (s) = _e_ C j +1(s) ~ J + 2 J. - + 5 2 

1T k=O k (J- 2k + 2-S) 

(B25) 
and similarly for R 21 (s), where j + 1 ~ j. The condi­
tion that det(l - R) = 0 is thus 

(B26) 

* This work was supported by the u.s. Atomic Energy Commission. 
1 B. Bakamjian and L. H. Thomas, Phys. Rev. 92,1300 (1953). We 

shall treat only the Coulomb part of the electromagnetic inter­
action, so that strictly speaking our equation will be an approxi­
mate Bakamjian-Thomas equation. 

2 R. N. Stuart, Ph.D. thesis (University of California, Berkeley, 1952) 
(unpublished). 

3 H. Feshbach and F. Villars, Rev. Mod. Phys. 30,24 (1958). 
4 C. Zemach, Selected TO/Jics ill Solid Slale "'/(/ Tilcorelica{ Pln'sics 

(Gordon and Breach, New York, 1968), p. 427. 
5 J. Schwinger, Proc. Natl. Acad. Sci. (U.S.) 37, 452 (1951);M.Gell­

Mann and F. Low, Phys. Rev. 84, 350 (1951); E. E. Salpeter and 
H. A. Bethe, ibid., 1232 (1951). 

6 M. L. Goldberger and K. M. Watson, Collision Theory (Wiley, New 
York, 1964), p. 21; J. Boguta and H. W. Wyld, Jr., Phys. Rev. 164, 
1996 (1967); David Avison, ihid .154,1583 (1967); N. D. Son and J. 
Sucher, i/}id.153, 1496 (1966); A. M. Brett and J. A. Oklowski, 
Nuovo Cimento 58,824 (1968). 

7 For Simplicity, we shall deal with Eq. (11); the asymptotic proper­
ties of Eq. (10) are not affected by the additional factor (qo + qo)/ 
qo· 

8 See W. HunZiker, Relv. Phys. Acta 34,593 (1961); A. Grossman and 
T. Wu, J. Math. Phys. 2, 710 (1961); K. Meetz, ibid. 3, 690 (1962); or 
M. Scadron, S, Weinberg, and J. Wright, Phys. Rev. 135, B202 (1964). 

We see that Sis) has poles at s =j +~, j + t ... , 
- j + t and hence S ,Sj+l can be expressed as a sum 
of poles times reSidues, which will now be evaluated. 

We first consider the residue of the poles at s = j + % 
- 2k, where k is an integer. For this purpose we note 
that31 

Sj(j + % - 2k) = (- 1)j-l/2 

x 1T[1 - (- 1)i-1/2 COS1T(j + % - 2k)t1 
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The factor in the square brackets is just 2, and the 
integral can be written as 

(- 1)j +1/2 f Pj_1/2(cose) sin(j - 2k + 1)ede. (B28) 

Further, 
[( j-2k+ 1/2 )/2] 

sin(j - 2k + 1)8 = sine I) a"'pj-1/2-2m(COSe), 
m=0 

so the integral vanishes unless k = 0 or k = j + 1. 
Similarly, one gets zero for all of the residues asso­
ciated with poles in Cj • Thus the product of Sj(s) 
Sj+1 (s) only has poles at s = j + ~ and s = 1;- j. At 
s = j + t we find 

(B29) 

and at s = ~ - j, the result is the same except for a 
change in sign. We finally obtain 

1 = +. (Ze 2
)2 0 1 1) 

(2j + 1) . + % - s j - ! + s 
(B30) 

From this one easily finds the Singular values in s: 

(B31) 
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10 E. C. Titchmarsh, Illtrodltctioll lu lile TileoVl' ur FOllyier Jlllexrais 
(Oxford U. P., London, 1962), p. 60. It is also possible to make a 
Fourier transformation instead of the Mellin transformation. 
In this case one is led to a study of a Wiener-Hopf equation in­
stead of Eq. (57). 

11 In subsequent equations we will use the same symbol for a func­
tion as for its Mellin transform. The two will be distinguished by 
their arguments,p or s. 

12 N. Muskhelishvili, Sillgular Inlegral Equaliolls (Noordhoff, Gron­
ingen,1953). 

13 W. Pogorzelski,Illlegral Equaliolls alld Ilteir A/'/J{icaliolls (Perga­
mon, Long Island City, N.Y., 1966). 

14 The problem of finding a function with a given discontinuity 
across a contour is called the "Hilbert problem. " 

15 In our particular case,R(s) == 0(1/ lsI) as IIms \--> rt:J, and thus 
lnHo(s) --> 0 also. This implies that Ho(s) -> 1 as IIms 1-> O. Thus, 

J. Math. Phys., Vol. 13, No.3, March 1972 



                                                                                                                                    

418 J. V. LEPORE AND R. J. RIDDELL JR. 

although we have a solution of the discontinuity equation (64), 
Bo(s) cawwl be represented in the form of Eq. (61). We therefore 
do 110/ have a solution of the original homogeneous equation. 

16 E. T. Whitaker and G. N. Watson, Modern Allalysis (Macmillan, New 
York, 1943), p.138. 

17 For I '" 0, as has been seen, R I (5) has no singularities for - I + 1 
< Re(s) <: 1+ 2. One also sees that, at least for very small Ze 2 , 

there can be no ~n near the integers in this region, either. For 
small Ze 2 , the smallest ~n above ~ will be near I + 2. Thus a 
representation of this form is also available for I '" 0, except 
that some n values must be excluded. 

18 For I .. 0, C 1 and C 2 would be chosen between the lowest zero­
pole pair in R(s) for Re(s) > %, and to the right of that pair, res­
pectively. See Footnote 17. 

19 It is to be noted that H(s) must tend to zero at infinity if Eq. (61) 
is to hold. 

20 See Ref. 12 or 13. 
21 The latter kernel need not be bounded. It is only necessary that, 

for its kernel K, 1 1 IK(s, s') 12dsds' exists. 
22 The associate to aCk.frneIK(s, 5') is given by K'(s, s') = K(s', s). 

J. Math. Phys., Vol. 13, No.3, March 1972 

23 See Ref. 12 or 13. 
24 See Ref 13. 
25lf Ze 2 > 0, the point ~2lies at Res> 2 andR(s) is negative on the 

entire path discussed here so that for a repulsive potential there 
is no difficulty. 

26 See K. M. Case, Phys. Rev. 80, 797 (1950). 
27 See, e.g., Titchmarsh, Ref. 10. 
28 Throughout this analysis we have assumed that the integral equa­

tion has an integration weight factor of P' 2 so that the complete 
kernel is jJ'2K(p,p'), where 1((j),P'), is Hermitian. This factor can 
be modified by a change in the wavefunction of the form 1/I'(P) = 
P~1/I(p), which then introduces a factor (p'lp)" in the kernel. If 
such a change is made, the hermiticity condition becomes S R = 
~ + (\' and at the same time the conditions of Eq. (39) are also 
shifted by a. 

29 See, e.g., L. I. Schiff. 41"(!ltllliJ/ ,1icc//(/J/ics (McGraw-Hill, New York, 
1949), pp. 322, ff. 

30 We only consider the case in which the eigenvalue of k is j + t. 
The other case can be similarly treated. 

31 This relation has already been used to obtain Eq. (B20), using the 
integral reprefJentation for Q I' 



                                                                                                                                    

Nonlinear Perturbation Operators >I< 

L. C. Andrews 
Tee/Illical S/al) , ciSH" O/,('ra/ iOIl, M(I.~I/{/ 1'0.\ COIII/JWlI', For/ WI/\'Ile, llldialla 

and 
T. Triffet 

Cell/('I .lUI' A/'/llicd Mal/leilla/ics 
and 

De/la!'/lIIclli 0./ Me/aila!';;\', Mec/lIlllics, a 1111 Maierials Sciellce, ,\Iicliigall Siaie UlIil'ersii,l', Easi LOlls ill); , 
Michigail 40023 

(Received 15 January 1971) 

A systematic perturbation theory is presented for the analysis of nonlinear boundary-value problems. 
In particular, those equations are considered whose unperturbed form belongs to the class of linear 
special-function equations; the nonlinear tern,s are then regarded as perturbations of special-function 
operators. Utilizing the coordinate representation of quantum mechanics, a matrix representation is 
obtained for the perturbed operator, truncation and diagonalization of which will determine the perturbed 
eigenvalues and eigenvectors. In most cases the method is applicable even when the perturbation term 
is of the same order of magnitude as the remaining terms, perhaps even when it is larger. To illustrate 
this point the nonlinear Legendre-like equation (d;dx)(1 - x 2 )(du/dx) + AU + ax 2u 2 

=0 0 is solved for the 
cases when a =0 1 and a =0 5. Other examples include the Hartree equations for the helium atom, where 
a qualitative comparison of the ground-state energy is made with experimental data, and a detailed 
analysis of the van der Pol equation for a = 0.5 and a = 1. 

1. INTRODUCTION 

From the theory of representations it is known 
that a linear operator L which transforms a Hil­
bert space into itself gives rise to a matrix repre­
sentation of that operator. The matrix elements 
can be defined by the inner product 

(1.1) 

where {¢k} represents a complete set of ortho­
normal vectors over the space. We shall extend 
such representations to certain nonlinear forms 
of special-function operators, the matrix elements 
of which can be computed by algebraic manipula­
tion instead of by utilizing expressions like (1. 1). 

The type of nonlinear operator to be considered is 
represented by the hypergeometric-like form 

d d d 
S = - (1 -x 2 ) - - 2(11 + vx) - + CiX 2 U dx dx'" dx k' 

(1. 2) 

from which we obtain the nonlinear eigenequation 

(1. 3) 

The term CiX 2uk is regarded as a perturbation of 
the linear hypergeometric operator 

d d d 
L == - (1-x 2 ) -- 2(1J. + vx)-. 

dx dx dx 
(1. 4) 

Thus Ci will serve as the perturbation parameter, 
but will be treated as a positive constant of arbit­
rary magnitude in contrast to the usual restric­
tion that Ci remain small.! The operator Scan 
now be written as 

S = L + N, (1. 5) 

where N = CiX 2 U k , an expression which can itself 
be regarded as the product of a linear perturbation 
CiX 2 with a nonlinear perturbation Uk' For Ci == 0, 
of course, Eq. (1. 3) becomes a hypergeometric 
equation with known eigenvalues and eigenvectors. 
We shall seek solutions of such equations that will 
reduce to the known solutions in the unperturbed 
case Ci = 0, and yet will continue to hold when Ci 
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takes some value large enough to make the non­
linear term at least as important as the linear 
terms. 

In what follows, quantum mechanical examples will 
be stressed, not because the method to be pre­
sented must be limited to such cases, but because 
they constitute an exceptionally promising field of 
application. Perturbation techniques have long 
been used to obtain approximate solutions of the 
extended, linear special-function forms that 
usually result from separating variables in the 
Schrodinger or Klein-Gordon equations. However, 
as soon as realistic particle interactions are 
included. these same equations become nonlinear, 
and little progress has been made in dealing with 
them systematically. Moreover, it has been widely 
recognized that any general field equation which 
incorporates the behavior of the elementary par­
ticles must also be nonlinear. Heisenberg, for 
example, suggested the following equation: 

ia~ a: + l2a v
: x(x*avx): = 0, 

ax 
(1. 6) 

where x(x) is a local field operator, the a V are the 
conventional Pauli matrices, l is an arbitrary con­
stant with the dimension of length, and the dots :: 
in the second term refer to the definition of a pro­
duct of three field operators at the same space­
time point.2 Einstein's writings leave no doubt that 
he believed in the existence of such an equation, 
and de Broglie has for many years invoked a non­
linear wave equation in connection with his double 
solution theory. 3 

We wish to rewrite the differential equation (1. 3) 
in terms of algebraic operators representing the 
dynamic variables. This involves transformation 
of the functions uk(x) of the differential equation 
to the vectors tJ;(k) (q) of the algebraic equation. 
Such a transformation can be represented by 

(1. 7) 

where x is treated as an unrestricted coordinate 
variable and p and q, the linear momentum and 
position operators, are understood to satisfy 
qp - pq = i (with Ii = 1). Since in general 
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(1. 8) 

it follows that 

(1. 9) 

- i ~ U (x) = ;-;-;(O~iPxp,,(k) 
dx 'k '/' ,/" (1. 10) 

assuming that qt/J(O) = O. Using these relations it 
is easily deduced that 

.!!:... (1 - x 2) dUk = _ iVO)eiPXh(1 _ q2)p",(k) 
dx dx Y ,/" (1. 11) 

(1. 12) 

(1. 13) 

but the nonlinear term in (1. 3) requires further 
analysis. 

To transform this term we write, parallel to (1. 7), 

uk(q) = lji(O)eipg,qt/J(k) = W(q,t/J(k», (1.14) 

where p 0 q represents the direct product matrix 
Pi~jl' so that W(q, lj;(k» will in general be some 
operator function of q and lj;(k). For most of the 
applications we have in mind, however. W(q, lj;(k» 
can be expressed in the form V(q) t/J(k), where, as 
will be shown later, V(q) is automatically absorbed 
in the process of forming the matrix elements of 
the nonlinear operator. Hence, the term becomes 

ax2u; = lji(O)eiPXaq2uk(q)t/J(k) 

(1. 15) 

and, combining results, (1. 3) may now be written 
as 

(1. 16) 

where 

A = p(1 - q2)p + 2i(J.l + vq)p - aq2Y(q)lj;(k). (1.17) 

More generally, the algebraic operator A may be 
taken to have the form 

A = r(p,q)B(p,q) + l).(p,q)Z(P,q, t/J(k», (1.18) 

where B represents an unperturbed self-adjoint 
linear operator, r and I). are nonsingular linear 
perturbations, and Z is a nonlinear perturbation. 
For the above case, 

B = p(1 - q2)p + 2i(J.l + IIq)p, 

r = 1, 

I). = - aq2, (1.19) 

while two other examples with different features 
are, firstly, 
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B=p2+ q2, 

r = 1, 

1).=-aq4, 

and secondly, 

d dUk dUk (1 - ax2) d- (1 - x 2) -d + 2a(1 - x 2)xuk -
X X ~ 

+ 'AiPk = 0, 

(1.20) 

[(1 - aq2)p(1 - q2)P _ ia(1 _ q2)qp Y(q)t/J(k) - 'A(k») 

x lj;(k) = 0, 

B = p(1 - q2)p, 

r = 1 - aq2, 

I). = - ia(1 - q2)qp, 

Z = Y(q)t/J(k). 

When a = 0 and r = 1, Eq. (1.16) reduces to 

(1. 21) 

(B - b (k»U(k) = 0, (1. 22) 

where b (k) and U(k) denote the unperturbed eigen­
values and eigenvectors. A factorization metliod 
for solving linear differential eigenequations of 
this type was suggested by Schrodinger in 1940 
and later developed in detail by Infeld and Hull. 4 

The procedure is to assume that for some self­
adjoint operator M, whose eigenvalues m are de­
sired, there exist mutually adjoint linear operators 
J+,J- (usually complex conjugates) satisfying 

(1. 23) 

(1. 24) 

If, in addition, they satisfy certain other conditions, 
the operator B is said to admit a factorization. In 
particular, if a transformation can be found such 
that B has the form 

B =p2 +w(q), 

then Eq. (1. 22) can be factorized into the two 
equations: 

(1. 25) 

[K(q, M + 1) - ip] U~) = [b (j) - a(m + 1)]1/2U~~i. 
(1. 26) 

with 

[K(q, M) + ip] U~,j) = [b (j) - a(m)]1/2U~~i, 

J+ = K(q,M + 1) - iP, 

J- = K(q,M) + ip. 

(1. 27) 

(1. 28) 

(1. 29) 
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Actually, (1. 26) and (1. 27) were originally present­
ed as differential equations 

~(x,m + 1) - d~)U'; = [bj -a(m + 1)]
1/2

U';+1 

(1. 30) 
and 

(, ) d) m [ ()]1/2 m-1 ,K(X,m + dx Uj = q-am Uj , (1. 31) 

and the fact established that a necessary and suf­
ficient condition of factorization is for K and a 
to satisfy the equation 

d 
dx [K(x, m + 1) + K(x, m)] + K2(x, m + 1) 

- K2(x, m) + a(m + 1) - a(m) = O. (1. 32) 

Miller has also shown that Riccati equations simi­
lar to (1. 32) are sufficient to determine the four­
dimensional Lie algebras g(a, b) whose represen­
tations correspond to a study of all special flmc­
tions of hypergeometric type. 5, 6 

The factorizations (1. 26) and (1. 27) permit one to 
obtain the eigenvalues and eigenvectors of the 
operator B in a simple and elegant manner. How­
ever, the step operators J+,J- are not unique, as 
more than one factorization is often possible. 
Green and Triffet have recently introduced a sys­
tematic procedure for determining such opera­
tors.7 They have shown that construction of a 
sequence of linearly independent operators, which 
do not commute with the unperturbed operator B, 
will ultimately lead to an appropriate form. Step 
operators determined in this fashion will usually 
not be mutually adjoint; however, they retain their 
most useful properties and are more general than 
those defined by the Infeld-Hull factorization tech­
nique. Also featured is the basic notational scheme 
utilized here and an algebraic method for finding 
matrix representations of linear operators which 
has been adapted to the present purpose. 

2. GENERAL DEVELOPMENT 

A nonlinear differential equation of the form 

(2.1) 

where L is a linear differential operator, N a non­
linear differential operator, and O! a constant of 
arbitrary magnitude can be treated as a perturba­
tion problem. To do so, however, it is generally 
more convenient to utilize "physical boundary con­
ditions" instead of the more common artificially 
imposed boundary conditions related to the Sturm­
Liouville equation. For the special case when 
0' = 0, Eq. (2.1) becomes linear, so it is natural to 
regard 0' as the perturbation parameter. 

Writing (2. 1) in algebraic form, displaying the 
quantum mechanical conjugate variables p and q, 
we arrive at 

(2.2) 
where t:. is understood to contain 0' as a factor. 
The linear operator L therefore consists of a 

self-adjoint operator B multiplied by a perturba­
tion r (ordinarily unity in the examples to be con­
side red). The nonlinear operator N is decomposed 
in such a way as to separate out the dependency 
on the eigenvectors t/I(k); only Z will be a function 
of t/I(k). Introducing the distinct operators t:. and 
Z for N is not necessary but merely a convenience 
for calculating the matrix elements, since t:. may 
then be interpreted as a linear perturbation of the 
type treated in Ref. 7. 

We seek a matrix representation for A, 

(2.3) 

diagonalization of which by numerical methods 
will determine the perturbed eigenvalues. Hence, 
our general procedure will be to find separate 
matrix representations for each of the operators 
r, B, t:., and Z. For each choice of a basis which 
defines the Hilbert space a different, equivalent 
representation will be obtained; but the most con­
venient basis to select is the set of normalized 
eigenvectors belonging to the unperturbed operator 
B. The representation for B will then be the diago­
nal matrix 

(2.4) 

where the b (j) are the eigenvalues of B, and it only 
remains to determine the matrix representations 
for r, t:., and Z with respect to this basis. 

A. The Operators B, t:., and r 

A method of finding such representations for rand 
t:. when B is some special-function operator is 
also presented by Green and Triffet, together with 
specific results for a number of important cases.7 
Building on their technique for defining the step 
operators J(l) and J(2) (generalizations of J+ and 
J-), they assume that t:., for example, can be repre­
sented as a function of these operators and a third 
operator M, in terms of which B can easily be 
expressed, but whose eigenvalues m(k) = mel) + k 
- 1 are separated by unity. 

Denoting by t:. (0) the diagonal matrix whose non­
zero elements are identical with the center diago­
nal elements of t:., and by t:.(r)fJ~ and e~t:.(-r) the 
matrices whose only nonzero elements are iden­
tical with those of t:. in the rth diagonal above and 
below the center diagonal, respectively, one may 
write 

t:. = t:.(0) + is (fJ~t:.(-r) + t:.(r)fJ~), 
r=l 

(2.5) 

Since the matrix elements of the unit step opera­
tors fJ+ and fJ_ will be 

(fJ+ljk = OJ k+V 

(fJ_)jk = 0j+l k' 

the matrix elements of t:. will be given by 

(2.6) 

(2.7) 
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(2.8) 

But, supposing that ~ can be represented as some 
function of J(1),J(2), and M, we may also write 

~ = E(O) + I; (J(l)rE(-r) + E(r)J(2)r), (2.9) 
r=l 

with 

It is established by Green and Triffet that 

J(l)r = e:h(l)(M)h(l\M + 1) ••• h(l)(M + r - 1), 

(2.10) 

J(2)r = h (2)(M)h (2) (M + 1) ••. h(2)(M + r - l)e~, 

where 

and 

Thus, comparison of (2.5) with (2.9) yields 

~(O) = E(O)(M), 

~ (-r) = E (-r)(M)h W(M)h (U(M + 1) 

•.. h (1) (M + r - 1), 

~(r) = E(r)(M)h (2)(M)h (2) (M + 1) 

'" h(2)(M + r - 1). 

(2. 11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

From these relations the matrix representation of 
appropriate perturbation terms can be obtained. 
This is explicitly illustrated in Sec. 3. 

B. The Operator Z 

There is a difficulty inherent in the form of the 
operator Z that does not occur for the linear 
operators; it is a function of the unknown perturbed 
eigenvectors lj;(k). However, this problem can be 
alleviated by applying a technique characteristic 
of the standard theory. It is assumed that l/I (k) is 
a continuous function of the parameter a. When 
such a parameter does not explicitly appear in 
the eigenequation it can be introduced and later 
set equal to 1, so that we can always form the 
Taylor expansion about a = 0: 

(2.17) 

where l/Ilk) is the derivative of l/I(k) with respect 
to a, evaluated at a = 0, and cp(k) is a normalized 
eigenvector of the operator B. Assuming that Z 
is analytic, it too may be expanded about a = 0: 

(2.18) 

where, by definition, 
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Y = Z(O, cp(k») (2.19) 

and 

(2.20) 

For first-order perturbations we shall henceforth 
approximate the operator Z by Y. The validity of 
such an approximation will, of course, depend on 
the convergence properties of (2.18). 

Equation (2.19) makes clear the dependence of Y 
on the index k. Since this index refers to the kth 
column in the matrix representation, the matrix 
elements of Y must be calculated by columns, i.e., 
for each column, Y will essentially be a different 
operator. It is this column selection for the mat­
rix elements of Y that constitutes the primary 
function of the operator V(q) defined in the Intro­
duction. 

The operator Y can be represented in a manner 
analo~ous to ~. We shall denote by y(O), er y(-r), 
and Y r)e~ matrices similar to those defintd by the 
corresponding expressions containing the operator 
~; hence, 

Y = y(O) + I; (e:y(-r) + y(r)e~), 
r=l 

(2.21) 

with the matrix elements 

Y (O) ~ ( (-r) (r) 
1jk= j 0jk+ LJ Y k 0jk+r+Yj 0j+rk)' 

r=l (2.22) 

Assuming al~B tha! Y, like ~, can be expressed as a 
function of J ,J(2, and M, we obtain 

Y = E(O) + I; (J(l)rE(-r) + E(r) J(2)r), (2.23) 
r=l 

which, with the aid of Eqs. (2.10) and (2.11), allows 
us to make the associations 

y(O) = E(O)(M), 

y(-r) = E(-r)(M)h(l'(M)h(l)(M + 1) 

••• h (l)(M + r - 1), 

y(r) = E(r,(M)h(2)(M)h(2)(M + 1) 

••• h(2)(M + r - 1). 

(2.24) 

(2.25) 

(2.26) 

Because of the presence of the operator V(q), the 
above representation must be repeated for each 
column of the matrix Y, but only those elements 
that occur in the given column need be calculated. 
For example, suppose that the matrix element~ in 
the third column of Y corresponding to Y = cp( ) 
are desired. By utilizing Eqs. (2. 21)-~2. 26), the 
complete matrix representation for q} ) could be 
obtained; 
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q}3) 
11 

qP) 
12 

qP) 
13 

qP) 
14 

cpg) cp(3) cp(3) q1}j 
cpC3) = 22 23 

cp(3) cp(3) cp(3) cp(3) 
(2.27) 

31 32 33 34 

cp(3 ) 
41 

cp(3) 
42 

cp(3) 
43 

cp(3) 
44 

However, most of this effort is unnecessary since 
only the elements in the third column will be need­
ed to represent Y. 

To help eliminate other unnecessary calculations 
in computing the matrix elements of Y, we note 
that whenever the coordinate q has a symmetric 
matrix representation, then 

E(r)(M)h(2)(M)h(2)(M + 1) ... h(2,(M + r -- 1) 

::: E(-r)(M)h (l)(M)h (l)(M + 1) ... h (l)(M + r - 1). 

(2.28) 

This means that none of the coefficients of J(2)r in 
Eq. (2.23) need be computed; the coefficients of 
J(1)r will determine all of the matrix elements in 
a given column. 

3. A NONLINEAR LEGENDRE-LIKE EQUATION 

When J1 = v ::: 0, Eq. (1. 3) reduces to the nonlinear 
Legendre-like equation 

(fx (1 - x 2 ) fx + ax 2uk + Ak)Uk ::: 0, (3.1) 

which in operational form featuring p and q be­
comes 

[p(l - q2)p _ aq 2V(q)l/I(k) _ A(k)]I/I(k) = O. 

(3.2) 
Expanding 1/1 (k) in a Taylor series about (]I = 0 
yields 

(3.3) 

where cp(k) again represents the normalized eigen­
vectors of the unperturbed operator. Hence, sub­
stitution and retention only of terms linear in a 
gives 

(3.4) 
Comparison of this with the standard form [(1.16)­
(1.18)] will then establish the following- identifica­
tions: 

B ::: P(1 - q2)p, 

r::: 1, 

Ll. = -C'iq2, 

A. The Operator B 

(3.5) 

Before the matrix representations of the operators 
Ll. and Y can be constructed, the eigenvalues and 

eigenvectors of the operator B must be found. The 
unperturbed form of Eq. (3. 4) is given by 

[P(l - q2)p - b (k)W(k) = O. (3.6) 

To determine the associated step operators J(l>, 
J(2), it is most convenient to select J 1 = q in the 
definitive relations provided in Ref. 7: 

[B,JkJ = 'E.J.C'k J J J , 

J (n) - '" J ten) 1 2 
- '-'k k"k' n = , . 

Then 

[B,J1J = [p2,q] _q2[p2,q] + 2iq[p,q) 

::: - 2i(1 - q2)p + 2q 

= 2(J1 + J2) 

(3.7) 

(3.8) 

(3.9) 

[B,J2) = [- ip(l - q2) + i(l - q2)p Jp(l - q2)p 

= i[P,q2]P(1- q2)p 

(3.10) 

where J2 = -i(1 - q2)p. The eigenvalues of the 
matrix C'k are A (1) ::: 1 + (1 + 4B)1/2 and A(2) 
= 1 - (l

l + 4B)1/2. To avoid the square root B 
may be equated to M{M + 1), so that A (1) ::: 2{M + 1) 
and A (2) = - 2M. The right eigenvectors of cjk are 
~(1) = (M + 1,1) and ~(2) = (M, -l);hence 

Now 

J(l) = q(M + 1) - i(1 - q2)p, 

J(2)::: qM + i(J - q2)p. 

J(1}J(2) = [q(M + 1) - i(1- q 2)pJJ(2) 

::: qJ(2)M - i(l - q2)pJ(2) 

(3.11) 

(3.12) 

= q2M2 + iq(l - q2)pM - i(l - q2)pqM 

+ (1 - q2)p(1 - q2)p 

= M2 - (1 - q2)M(M + 1) + (1 - q2)p 

x (1- q 2)p 

(3.13) 

from which it may be concluded that the first 
eigenvalue of Mis m (1) = O. 

Therefo~e m(k) == k - 1 and applying the relation 
b(k) = m k)(m(k) + 1) gives the eigenvalues 

b(k) == k(k - 1). (3.14) 

The first eigenvector U(l) satisfies 

(3.15) 

which is equivalent to the differential equation 

dV 1 
(1 -x2 ) dX = 0, (3.16) 
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with vI corresponding to the unperturbed eigen­
function. Thus vl :::: const is a solution of (3.16). 
Successive eigenvectors may be determined from 

U(k+1) = J(I)kU(l), 

which in the form of (3.16) becomes 

vk+l =(k + l)x + (x Z - 1) d~) kVl 

d k 
k = C k -:R (xZ - 1) , 

dx 

(3.17) 

(3.18) 

where the Ck ' s are constants. Normalization of 
the eigenfunctions vk yields 

(3.19) 

the 
1 d k 

k 
Pk(X) = ~ -::---i (x2 - 1) 

2 k! dx 

being the well-known Legendre polynomials. 
Accordingly, the normalized eigenvectors of (3.6) 
will be given by 

(d) nP):::: k - 1, b(k) :::: k(k - 1); 

(e) ¢(k) = (k -1)1/2Pk _1(q); 

(f) h<l)(M) = (M + 1)(2M + 1)1/Z/(2M + 3)1/Z; 

h(2)(M) :::: (M + 1}(2M + 3)1/Z/(2M + l)l/Z; 

(g) J(2}J(I) = h(Z)(M)h(l)(M) = (M + l)z. 

B. Matrix Representation for A 

The matrix representation for A = - aq2 can 
readily be obtained from the expression 

q2 = M2[(2M + 1)(2M - 1)]-1 + (M + 1)2 

x [(2M + 1)(2M + 3)]-1 + J(1)Z[(2M + 1)(2M+ 3)]-1 

+ [(2M + 3)(2M + 5)r1J(2)2, (3.27) 

derived by employing the above list of properties. 
From Eq. (2. 9) 

00 

A = E(O) + ~ (JC1)r E(-r) + E(rh(2)-r) , (3.28) 
",,1 

so that the following may also be identified: 

A,(k) _ (k .!.)l/Zp () 
'+' - - 2 k-1 q . 

E(O\M) = -0'{M2[(2M + 1)(21\11 - l)rl 

(3.20) . 
+ (M + 1)2[(2M + 1)(2M + 3)]-1}, (3.29) 

Since 

J(l) = (M -1)q + i(l- q2)p, 

but from (3.11) and (3.12) 

q = (J(l) + J(2»/(2M + 1) 

and 

(3.21) 

(3.22) 

- i(1 - q2)p = [J(1)M - J(2)(M + 1)]/(2M + 1), 

(3.23) 
it follows that 

J(l) = (M - 1)(J(l) + J(2»/(2M + 1) 

- [J(l)M -J(2)(M + 1)]/(2M + 1) 

= (J(l)M + J(Z)(M - 2) -JCDM + J(Z)(M + 1)]1 

x (2M+ 1)-1 

= J(Z)(2M - 1)/(2M + 1). (3.24) 

Thus,ftZ) is also determined and Eqs. (2.12) and 
(2.13) define 

h (l)(M - 1) = M(2M - 1)1/2/(2M + 1)1/2 (3.25) 
and 

h(2)(M -1) =M(2M + 1)1I2/(2M- 1)112. (3.26) 

Results for the operator B are summarized below 
for easy reference: 

(a) B = p(l - qZ)p, 1/ = 1 (see Ref. 7); 

(b) B = M(M + 1); 

(c) J1 :::: q = (J(l) + J(2»/(2M" + 1), 

J2 :::: - i(l - q2)p 

= [J(l)M - J(2l(M + 1)]!(2M" + 1); 
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E(-2)(M) = - 0'[(2M + 1)(2M + 3)f\ (3.30) 

E(2)(M) = - 0'( (2M + 3)(2M + 5)]-1, (3.31) 

all other E(r)(M) being zero. Thus, Eqs. (2.50)­
(2.52) yield 

A(O)(M) = - a(2M2 + 2M - 1)[(2M - 1)(2M + 3)]-1, 

(3.32) 
and 
A (-2)(M) = A (2\M) 

= - a(M + l)(M + 2)[(2M + 1)(2M + 3)2 

x (2M + 5)]-1/2. (3.33) 

Consequently, since m(k) ::::: k - 1, the matrix ele­
ments are 

A. ::::: A(O)(mU~o + A(-2)(m(k"o. 
}k )k ./ J 1-+Z 

+ A (2)(mU»Oj+2 k (3.34) 

or 

Akk ::::: - ia(k 2 - k - i)/[(k + t)(k - ~)], (3. 35) 

~kk+2 = ~ k+2 k 

= - ~ak(k + 1)/[(k + ~)2(k_ ~)(k + !)1!2, 
(3.36) 

with all other ~jk = O. 

C. Matrix Representation for Y 

By utilizing (3.22) the normalized eigenvectors of 
the operator B can now be expressed as functions 
of J(1), J(2), and M: 

(3.37) 



                                                                                                                                    

NONLINEAR PERTURBATION OPERATORS 425 

¢ (2) = (~)1/2q 
= (~)1/2(J(l) +.J(2»/(2M + 1), (3.38) 

¢(3) = t(~)1/2(3q2 - 1) 

= t(~)1/2{3[(J(l) + J(2»/(2M + 1))2 - 1}, 
(3.39) 

Keeping in mind that the matrix elements for Y 
must be calculated by columns as determined by 
V(q), we have for the first column, where Y = ¢(l), 

(3.40) 

Therefore 

E(O)(O) = (~)1/2, (3.41) 

and the only nonzero matrix element in this 
column is 

Y _ (!)1/2 11 - 2 • 

For the second column, where Y = ¢ (2) , 

E(O)(M) = 0 
and 

E(-1)(M) = (~)1/2/(2M + 1), 

(3.42) 

(3.43) 

so that by Eqs. (2. 25)-(2. 28) the required matrix 
elements must be 

Y 12 = E(-1)(0)h(1)(0) 

= (~)1/2, 
Y22 = E(0)(1) 

= 0, 

Y32 = E(-1)(1)h(l)(1) 

= m)1/2. 

For the third column, 

Y = ¢(3) 

(3.44) 

(3.45) 

(3.46) 

= ~(~)1/2{M2[ (2M + 1)(2M - 1)]-1 + 1M + 1)2 

X [(2M + 1)(2M + 3)]-1 - t + J(1)2 

X [(2M + 1)(2M + 3)]-1 

+ [(2M + 3)(2M + 5)]-1J(2)2}. (3.47) 

Thus 

E(O)(M) = ~(~)1/2{M2[(2M + 1)(2M - 1)]-1 

+ (M + 1)2[(2M + 1)(2M + 3)]-1 - t}, 
E(-2)(M) = ~(~)1/2[(2M + 1)(2M + 3)]-1, (3.48) 

and the nonzero matrix elements become 

Y
13 

= E(-2)(O)h(1) (0)h(l)(1) 

= (~)1/2, 

Y33 = E(0)(2) 

= H~)1/2, 

(3.49) 

(3. 50) 

YS3 = E(-2)(2)h(1)(2)h U) (3) 

= ~W1/2. (3. 51) 

Following the same procedure for ¢(4), ¢(s>, ... , 
will determine as many columns of Y as may be 
needed. 

D. Discussion of Results 

The first few matrix elements calculated from the 
above relations for B, 6., and Yas they appear in 
the nonlinear Legendre-like equation (3.4) are 
displayed below: 

000 0 

020 0 

B = 006 0 

o 0 0 12 

1 
"3 o 2/3Y5 

Y= 

o g 

2/3Y5 0 

1/1'i 1/1'i 
0 0 

o 
11 
IT 

1/1'i 
0 

0 2/fiO 2Y5/71'i 

0 0 0 

0 0 6/71'i 

(3. 52) 

(3.53) 

(3. 54) 

Combining these results gives the desired re­
presentation for A: 

(3. 55) 

A modified version of the FORTRAN program 
described by Green and Triffet7 was used to find 
the eigenvalues and eigenvectors of the resulting 
nonsymmetric matrix. The eigenvalues corres­
ponding to (}' = 1, computed by truncating A to 10 
rows and columns, are listed in Table I, along with 
comparable values computed by the standard per­
turbation method. 1 

The reason that every other value agrees exactly 
is that the nondiagonal elements of A are zero for 
every other row; hence, the diagonal element is 
itself an eigenvalue. This is a peculiarity of the 
particular matrix being considered. The difference 
in the other eigenvalues can be accounted for by 
the fact that standard perturbation theory presumes 
that the matrix A is essentially a diagonal matrix 
from the beginning, i.e., that all nondiagonal 
elements are either zero or negligible in com­
parison with the diagonal elements. For such a 
matrix the eigenvalues can be approximated by the 
diagonal elements themselves. To assure that the 
nondiagonal elements will be small, conventional 
theory requires that the perturbation parameter 
(}' be small, thus forcing the desired condition. 

J.Math. Phys., Vol. 13,No. 3, March 1972 



                                                                                                                                    

426 L. C. AND R E W S, T. T R IFF E T 

Table 1. A comparison of eigenvalues for Eq. (3. 1) obtained by Substituting these values into Eq. (3.1) yields 
standard and matrix perturbation methods with Ci = 1. 

Standard method Matrix method 

k A(k) I? A(k) 

1 - 0.23570 1 - 0.24990 
2 2.0000 2 2.0000 
3 5.397 7 3 5.394 3 
4 12.000 4 12.000 
5 19.631 5 19. 638 

6 30.000 6 30.000 
7 41. 703 7 41. 709 
8 56.000 8 56.000 
9 71. 744 9 71. 750 
10 90.000 10 90.000 

Table II. Eigenvalues for the matrix given in Eq. (3. 52)-(3. 55) 
with Ci = 5. 

k A(k) k A(k) 

1 - 1. 6896 14 182.00 
2 2.0000 15 209.04 
3 3.0686 16 240.00 
4 12.000 17 271. 08 
5 18. 309 18 306. 00 

6 30.000 19 341. 07 
7 40. 591 20 380.00 
8 56.000 21 418. 97 
9 70. 758 22 462.00 
10 90. 000 23 504. 78 

11 108.88 24 552.00 
12 132.00 25 598. 51 
13 154.97 

When Ci = 1, the nondiagonal elements of the 
matrix (3.55) are relatively small so that the two 
methods of computing eigenvalues should give 
nearly the same results. As Ci increases in mag­
nitude, however, a great deal more error is intro­
duced by neglecting the nondiagonal elements of A. 

To present a qualitative comparison of the two 
methods we shall examine how accurately the 
eigenvalues and eigenfunctions satisfy the original 
equation. The first eigenvalue and eigenfunction 
computed by the standard theory are 

Al =- 0.23570 
and 

u l (x) = VI (x) + 0.0351 v3 (x), 

(3. 56) 

(3. 57) 

where vk(x) is defined by Eq. (3.19). Substituting 
these expressions into Eq. (3. 1) yields the 
inequality 

I 
d dUl I 

dx (1 - x2) dx + AlUl + x2u~ ::;; 0.069, 

Ix I::;; 1, (3. 58) 

whereas an exact solution would reduce the right­
hand size to zero. The corresponding eigenvalue 
and eigenfunction for the matrix method are 

A1 = - O. 24990 (3.59) 

and 

u1(x) ~ v1(x) + 0.0374 v3(x) + 0.0008 v5(x) 

+ 0.0001 v7 (x). (3.60) 
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I 
d dU1 I 

dx (1 - x2) dx + AlU l + x2u~ ::;; 0.004, 

Ix I::;; 1. (3. 61) 

Equation (3.57) has been limited to the sum of two 
unperturbed eigenfunctions because that is all the 
standard theory predicts. On the other hand, the 
matrix method generates an infinite series of 
terms, the first four of which have been used for 
this calculation. 

To provide an example where the perturbation 
term dominates the remaining linear terms, we 
have chosen the case where Ci = 5. Table II con­
tains the eigenvalues obtained by truncating A to 
25 rows and columns. Substituting the first eigen­
value and eigenfunction computed into Eq. (3. 1) 
gives 

I 
d dUI 
-(I-x2)­
dx dx 

Ixls 1. (3.62) 

Though this represents substantially more error 
than when Cl' = 1, it still may be considered a fair 
approximation for a first-order perturbation. No 
attempt at comparison with standard perturbation 
theory is made, since the latter is not expected to 
give even a qualitative solution for such a large 
perturbation. 

In general the amount of error will increase with 
an increase in the magnitude of Ci. However, 
for the nonlinear theory a significant amount of 
this error can be introduced when we approximate 
equations like (3.2) with equations like (3.4). No 
similar approximation occurs in the linear per­
turbation theory, 7 and it is this fact that most 
clearly distinguishes the one from the other. 

4. GENERAL NONLINEAR SPECIAL-FUNCTION 
OPERATORS 

A. A Nonlinear Hypergeometric-like Equation 

Consider again the nonlinear hypergeometric-like 
equation introduced in Sec. 1, 

( 
d d d ) dx (1 - x2) dx - 2(/-L + vx) dx + Cl'X2Uk + Ak Uk = 0, 

(4.1) 
with the first-order algebraic form 

. - (k) (k)] 
[P(1 - q2)p + 2z(/-L + vq)p - Cl'q2 V(q)</J - A 

xtJ.;(k)=O, (4.2) 

so that 

B = p(l - q2)p + 2i(/-L + vq)p, 

r = 1, 

A =- Ciq2, 

Y = V(q)</J W. 

(4.3) 

Since most of the speCial-function equations can be 
obtained from the hypergeometric equation, it is 
appropriate to feature this case as a general 
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example. The results may then be applied to many 
other equations through appropriate transforma­
tions, and different kinds of nonlinearities may be 
studied separately. There is, in fact, no essential 
reason beyond computational convenience why con­
siderations need be restricted to equations of 
special-function type. 

By procedures similar to those of Sec. 6 the 
following relations may be obtained for the unper­
turbed operator B: 

(a) B == p(1 - q2)p + 2i(/-I + vq)p, 

TJ == (l-qf(~+v)(1 + qr(v-~); 

(b) B = (M - v)(M + v + 1); 

(c) J l == q = (J(1) + J(2»/(2M + 1) - J.lv/[M(M + 1)], 

J 2 = - i(1 - q2)p 

= [J(1)(M - v) - J(2)(M + v + 1»)!(2M + 1) 

+ /-I (M - v)(M + v + 1)/[M(M + 1)]; 

(d) b (k) = (m(l) + k + v)(m (1) + k - v-I), 

(f) JW = J(2)(2M - 1)/(2M + 1). 

Details of computing the matrix elements of A and 
Y will be omitted since they also are analogous to 
those given in Sec. 3. To represent A == - aq2, 
however, note that in this case 

q2 = Rl(M) + JW2R2(M) + R 2(A! + I)J(2)2 

+ J(l)R 3 (M) + R 4 (M)JC2>, (4.4) 

where the following have been defined for notational 
convenience: 

Rl (M) = J(1)J(2)/[(2M + 1)(2M - 1)] + h(2)(M) 

x h(1)(M) [(2M + 1)(2M + 3)] + J.l 2v2/[M2(M+ I)2J, 
(4.5) 

R2 (M) = [(2M + 1)(2M + 3)]-1, (4.6) 

R 3 (M) = - 11 v{[M(M + 1)]-1 + [(M + I)(M + 2)]-1} 

x (2M + 1)-1, (4.7) 

R 4 (M) =- /lv{[M(M + 1)]-1 + [(M + 1)(M + 2)]-1} 

x (2M + 3)-1. (4.8) 

Thus we identify 

A (0) == - aR 1 (M), 

AW=A(-ll 

== - aR 3 (M)h(1)(M), 

A (2) == .1.(-2) 

== - aRz(M)h(t)(M)h(1)(M + 1), 

(4.9) 

(4.10) 

(4.11) 

and by setting M = m(k), m(k) = m(l) + k - 1, 
calculate the matrix elements: 

(4.12) 

Ak k+2 == Ak+2 k' 

_D ( (k»[ (k·llZ + 2 2/ (k+1)2 == - u.n.2 m m /l v m 
2 2]1/2 [ (k+2)2 + 2 2/ (k+2)2 -/-I-V m jJv m 

_ J-L2 _ v2]1/2[(2m(k) + 1)/(2m(k) + 5)]1/2. 

(4.14) 

All elements not listed are to be taken as zero. 

To represent the operator Y we begin by assuming 
the normalized eigenvectors of B to have the form 
of polynomials: 

(4. 15) 

where the C~k) are constants. When this is not the 
case the eigenvectors can always be approxi­
mated by polynomials through the use of a trun­
cated Taylor series. For the first column, 

(4. 16) 

so the only nonzero element in this column is 

Y -CW 11 - 0 • 

The second column has 

Y == ¢(2) 

== Cfr) + Ci2 )q 

(4. 17) 

== C2f) + cF){- WI[M(M + 1)] + 
+ (2M + 3)-lJ(2)} , 

JW(2M + 1 )-1 

(4.18) 

from which we identify 

E(O)(M) == cff)- CP){J-Lv/[M(M + 1)n, 

E(-l)(M) == CP)(2M + 1)-1. (4.19) 

Thus, the matrix elements are 

Y12 == E(-l)(m(1)h(1)(m(l» 

= CF)[m(2)2 + 1l2v2/m(2)2 - 112 - v2 ]1/2 

x [(2m(1) + 1)(2m(1) + 3)]-112, (4.20) 

Y
22 

== E(0)(m(2» 

(4.21) 

Y32 == E(-l)(m (2»h(l)(m (2» 

== Cp)[m(3l2 + J-L2v2 /m(3)2 - J-L2 - v2 )1/2 

x [(2m(2) + 1)(2m(2) + 3)]-1/2. (4.22) 

Subsequent columns can be computed in the same 
manner. 
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B. Other Nonlinearities 

Theoretically, matrix representations can be 
found for any nonlinear perturbation for which a 
Taylor series expansion like (2. 18) exists. Listed 
below are a few examples specially selected to 
illustrate other forms of nonlinearities. In addi­
tion to the first few matrix elements of the pertur­
bations, all essential operator relationships are 
provided. 

1. Nonlinear Legendre-like Harmonics 

d dUk dUk 
dx (1 - X2)([X + 2a(I - x 2 ) dx Uk + Akuk == 0, 

A == p(I -l)p - ia(I -l)PV(q)q}k), 

B == p(1 - q2)p == M(M + 1), 

r == 1, 

6. == - ia(1 - q2)p, 

Y == V(q)q}k), 

q == (J(1) + J(2»/(2M + 1), 

- i(I- q2)p == (J(1)M- J(2)(M + 1)]!(2M + 1), 

J(1)J(2) == M2, J (1) == J(2)(2M - 1)/(2M + 1), 
b(k) == k(k - 1), m(k) == k - 1, 

1>(k) == (k - t)1/2 Pk-1(q) , 

where I)(q) is the jth Legendre polynomial, 

6.k+lk == ak(k - I)/(2k - 1)(2k + 1)]1/2, 

6.kk+1 == - ak(k + 1)/(2k - I)(2k + 1)]1/2. 

The matrix elements of Yare exactly those given 
in Sec. 3 for the nonlinear Legendre-like equation 
discussed there. 

2. Nonlinear Hermite-like Harmonics 

d2uk dUk 3 
-- - 2x- + axuk + AkUk == 0, 
dx 2 dx 

A == p2 + 2iqp - aqV(q)1>(k)2, 

B == p2 + 2iqp == 2M, 

r == 1, 

6. ==- aq, 

Y == V(q)1>(k)2, 

q == t(J(1) + J(2», 

ip == J(2l, 

J (1)J (2) == 2M, ;](l) == J(2), 

b(k)==2(k-I), m(k) ==k-I, 

1>(k) == (2k-1 1T 1/2(k - I)! r 1 / 2 H
k

- 1 (q), 

where Hj(q) is the jth Hermite polynomial, 

6.k +1 k == 6.kk+1 

== - a ( tk ) 1 /2 , 

Yll == (1/1T)1/2, Y 12 == 0, 
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Y22 == (9/1T)1/2, 

Y32 == 0, 

It should be noted that the unperturbed operator 
B == p2 + 2iqp is related by a similarity trans­
formation to the familiar harmonic oscillator 
operator B I == p2 + q2. 

3. Nonlinear Laguerre-like Harmonics 

d 2 uk dUk 
x-- + (1 - x)- + axuk sin(uk) + AkUk == 0, 

dx2 dx 

A == qp2 - i(1 - q)p - aqV(q) sin(cp(k», 

B == qp2 - i(l - q)p == M, 

r == 1, 

6. == - aq, 

Y == V(q) sin(cp (k), 

q == (J(1) + J(2» + 2M + 1, 

J(1)J(2) == M, 

b(k) == k- 1, 

(k) 
cp == L k- 1 (q), 

J(1) == J(2), 

m (k) == k - 1, 

where Lj(q) is the jth Laguerre polynomial, 

6.kk == - a (2k - 1), 

6.k+ 1 k == 6.kk+1 
=-O!k 1 / 2 , 

Y 11 == sin(1) , Y 12 == t sin(1) , 

Y 21 == 0, Y 22 == ° 
Y 31 == 0, Y 32 = - t cos(I), 

5. OTHER EXAMPLES 

A. The Hartree Equations for the Helium Atom 

The Hartree equations for the helium atom are 
classic examples of nonlinear equations arising be­
cause of interactions between particles. They fol­
low from applying the theory of the self-consistent 
field to the Hamiltonian 

(5. 1) 

where r 1 and r 2 are the coordinates of the two elec­
trons relative to the nucleus, r 12 == r 21 represents 
the distance between the electrons, and Q is a para­
meter related to the strength of the Coulomb repul­
sion between the electrons. Spin-dependent forces 
are neglected. 

The time-independent wavefunction is written as 

(5. 2) 

where 
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designates the one- electron orbitals; r, 13, and ¢ are 
the standard spherical coordinates; the ~}~ are the 
spherical harmonic functions; and the R~l are 
radial functions. This leads to 

(5.4) 

for j:= 1,2, 

p(il(r) = r RU )(r.) (5. 5) 
nl} } nl }' 

where i = 1,2, but i *- .i. 
When 01 = 0, Eq. (5.4) becomes a hydrogenic radial 
equation with the operational form 

The operator B :=p2 + l(i + l)q-2 - 4q-l does not 
lend itself to the calculation of the step operators 
J(1) and J(2) as they have been defined; this is a 
consequence of the fact that the discrete eigen­
values of B are bounded above. 

We consider the transformation 

Q:= (- b<k»1/2q, P := (- b(k»- 1!2p, (5.8) 

QP - PQ = i, which transforms the operator B to 

B' = QP2 + Q + l(l + I)Q-l, (5.9) 

with the associated eigenequation 

(5. 10) 

The eigenvectors of B' in the coordinate Q are the 
same as for B in the coordinate q. 

Following the procedure of Sec. 2 the step opera­
tors of B' are determined to be 

J(l) = Q - i Q P - M 
and 

J(2) := Q + iQP - M, 

from which it follows that: 

B'= 2M, 

J
1 

= Q = MJ(l) + J(2» + M, 

J
2 

= - i QP :=~(J(1) - J(2» , 

,T<l)J(2) = M(M - 1) - 1(1 + 1), J(ll := J(2), 

h'(k) = 4(- b(k»-l!2 := 2(k + l), 

U(k) = (2Q)I+le -QL;1?(2Q) 

(5. 11) 

(5. 12) 

(5. 13) 

where n = k + I and the L j(x) are generalized 
Laguerre polynomials. Thus, the eigenvalues and 
normalized eigenvectors of B are given by 

b(k):= - 4/n 2, n:= 1,2, "', (5. 14) 

The perturbing operators A and Y for Eq. (5.4) 
also have similar forms, defined by 

A = 201q-l 
and 

Y = V(q)S(q, n, n. 

(5. 16) 

(5. 17) 

Because the discrete eigenvalues b<k) have the 
upper limit zero, the discrete eigenvectors ¢ (k) of 
the operator B do not form a complete system of 
orthonormal vectors and, accordingly, do not pro­
vide a suitable basis for a matrix representation. 
The eigenvectors associated with the operator B' 
do form a complete orthonormal system, however, 
and this set may be utilized for matrix representa­
tions, even though the operator B will no longer be 
diagonal. 

To calculate the ground state energy of the helium 
atom we seek to diagonalize the matrix 

A:= B + AY, (5. 18) 

where B represents the energy of one electron due 
on!y to the Coulomb potential of the nucleus, and 
AY expresses the energy of interaction of the elec­
trons. To the first eigenvalue of A must be added 
the energy b(1) of the other electron due to the 
potential of the nucleus alone. Our matrix repre­
sentation will be based upon the condition that I = 0, 
even though this is not entirely correct whenever 
n > 1; there is a degeneracy in the I quantum num­
ber but the major contribution to the energy occurs 
for I = O. Also, for I = 0 the operator Y can be 
approximated by8 

(5. 19) 

Because the form of the perturbation does not lend 
itself to the algebraic method of computing matrix 
elements, we have in this case utilized the analyti­
cal technique discussed in Sec. 6. Matrix represen­
tations for B and AY can then be defined by 

(5. 20) 

(AY)jk = 201 f' q,{j)q-lS(q,k, O)q,Wdq , (5.21) 

where q,(k) represents the normalized eigenvectors 
of the operator B'. To be explicit, with 01 = 1 the 
first matrix elements of (5.20) and (5. 21) will be 

Bll := - 4 t' e- 2q (q2 + 2q)dq o 

= - 3 (5. 22) 
and 

co 

(AY)ll = 8 fa [e- 2qq - e- 6q (2q2 + q)]dq 

~ 1. 6296. (5. 23) 
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Continued calculation will yield the representations 

B 
__ [- 3.0000 1. 1550J 

(5. 24) 
1. 1550 - 1. 6667 

and 

[ 
1. 6296 

AY = _ O. 6842 
- O. 3512J. 

1. 0000 

The first eigenvalue of A = B + ~Y is 

(5. 25) 

E1~ = - 1. 724 Ry, (5.26) 

so that the total ground state energy becomes 

E - E(1) + b(1) 
10 - 10 

= - 5. 724 Ry. (5. 27) 

Compared with the experimental value of - 5. 807 
Ry, this represents an error of O. 083 Ry. If larger 
matrix representations are desired, the approxima­
tion (5. 19) probably should not be used, even though 
the calculation of Y from expressions like (5. 6) 
will be tedious. 

Millman and Keller 9 have computed the ground 
state energy for the helium atom by applying a 
modified form of the standard perturbation method 
to the Hartree equations. They obtained a value of 
- 5. 500 Ry, representing an error of O. 307 Ry with 
the experimental value. In addition, they made a 
comparison of results with those achieved by apply­
ing conventional perturbation techniques to the 
Schrodinger equation and showed that the eigen­
values agree up to first-order terms, but that the 
eigenvectors agree only up to zero-order terms. 

By the present method, however, it can be shown 
that the matrix representation for the radial 
Schrodinger equation, whose Hamiltonian is given 
by (5. 1), becomes 

Hy = 2B + ~Y, (5.28) 

where B, ~,and Yare the same as defined for the 
Hartree equations and, again, l = O. Clearly, the 
eigenvalues of (5. 28) will not be the same as those 
for the Hartree equations, since the sum of the 
eigenvalues of two matrices is not the same, in 
general, as the eigenvalues of the sum of those 
matrices. 

B. The van der Pol Equation 

An equation of frequent occurrence in the field of 
nonlinear oscillations is the van der Pol equation 

u" - (11(1 - u 2)u' + AU = 0, A > 0, (s. 29) 

where the primes indicate derivatives with respect 
to time. In nonlinear oscillation theory such equa­
tions are ordinarily treated as initial-value pro­
blems, where one seeks periodic solutions for a 
fixed value of A, rather than as eigenvalue problems 
featuring definite boundary conditions. Because of 
this distinction, the matrix perturbation method 
featured here must be applied in a slightly different 
way. 
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To be preCise, we look for solutions of (S. 29) with 
A = 1 satisfying 

u(t + 21T/W) = u(t) (S.30) 

and subject to the initial conditions 

u(O) = 2, u'(O) = O. (5. 31) 

The existence of such solutions is guaranteed by 
the theorem of Lienard1 ; and stability require­
ments indicate that the amplitude of u(t) varies 
between + 2 and - 2. 

The unperturbed solution of (5.29), subject to the 
initial conditions (5. 31), is given by 

(5. 32) 

where W ° = Ii = 1 is the angular frequency and 
e = 11T is the phase angle. The effect of the non­
linear term in the van der Pol equation is to change 
the angular frequency W o to a new value w, but this 
can be calculated by expanding ..fi in a Taylor 
series about €X = 0, 

(5. 33) 

then setting A = 1 to obtain 

W ~ 1- apI' (5. 34) 

where (liP! represents the first-order perturbation 
in the square root of the eigenvalues. 

In order to acquire a complete set of eigenfunctions, 
from which appropriate matrix representations can 
be derived, we reformulate (5. 29) as a boundary­
value problem. Choosing 0 :s t :s 1T as the funda­
mental domain of the Hilbert space, the eigenvalues 
and normalized eigenfunctions of the unperturbed 
equation become 

(5. 35) 

and 

(5. 36) 

As a first-order perturbation, the nonlinear opera­
tor of (5. 29) may be identified as 

2 d 
NO=(l-vk ) -. (5.37) 

dt 

To compute the matrix elements of NO it is again 
most convenient to apply the method discussed in 
Sec. 6, writing 

NOk = kC 2 r" [sinjt(l - C 2 sin2kt) coskt]dt. (S. 38) 
J '0 

Upon evaluation this yields 

o 0 
Nkk=N3kk=0, (5. 39) 

and for.i =t k or 3k, 

N? = jkC2 [I _ (_ 1)j+k](4 - C2 + C2 ) 
J k 4 j2 _ k2 j 2 - 9k2 ' 

(5.40) 
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Table m. Approximations of u(t) and u'(t) for the van der Pol equation obtained by numerical and matrix techniques. 
a 0.5 

Numerical method Matrix method 

u(t) u'(t) u(t) u'(t) 

0.0 2.00 0.00 2.00 0.00 
O. 1 1. 99 - 0.19 1. 99 - 0.12 
O. 2 1. 96 - O. 34 1. 98 - O. 25 
0.3 1. 92 - 0.48 1. 94 - O. 37 
0.4 1. 87 - O. 60 1. 90 - O. 50 

O. 5 1. 80 - O. 71 1. 84 - O. 62 
0.6 1. 73 - O. 80 1. 78 - 0.75 
O. 7 1. 64 - O. 89 1. 69 - 0.88 
O. 8 1. 55 - O. 98 1. 60 - 1. 00 
O. 9 1. 45 - 1. 07 1.49 - 1. 13 

1.0 1. 33 - 1. 15 1. 38 - 1. 25 
1.1 1. 21 - 1. 24 1. 24 - 1. 37 
1.2 1. 09 - 1. 34 1.10 - 1. 49 
1.3 O. 95 - 1. 44 O. 95 - 1. 60 
1.4 O. 80 - 1. 54 O. 78 - 1. 71 

1.5 0.64 - 1. 65 O. 60 - 1. 81 
1.6 0.47 - 1. 77 0.42 - 1. 90 
1.7 O. 28 - 1. 88 O. 23 - 1. 97 
1.8 0.09 - 2.00 0.03 - 2.02 
1.9 - 0.11 - 2. 10 - 0.18 - 2.06 

2.0 - O. 33 - 2. 18 - O. 38 - 2.07 
2.1 - O. 55 - 2.22 - O. 59 - 2.05 
2. 2 - O. 77 - 2.22 - O. 79 - 2.01 
2.3 - O. 99 - 2. 15 - O. 99 - 1. 93 
2.4 - 1. 20 - 2.02 - 1. 18 - 1. 82 

2. 5 - 1.39 - 1. 83 - 1. 35 - 1. 68 
2. 6 - 1. 56 - 1. 58 - 1. 51 - 1. 51 
2.7 -1.71 - 1. 29 - 1. 66 - 1. 31 
2.8 - 1. 82 - 1. 00 - 1. 77 - 1. 08 
2.9 - 1. 91 - O. 71 - 1. 87 - O. 83 

3.0 - 1. 96 - 0.43 - 1. 94 - O. 57 
3.1 - 1. 99 - O. 19 - 1. 98 - O. 29 
3.2 - 2.00 0.02 - 2.00 - 0.01 
3.3 - 1. 99 0.20 
3.4 - 1. 96 O. 36 
3. 5 - 1. 92 O. 50 

where C2 = 2/1T. 
Diagonalization of the matrix Ajk = b/5 jk + aNJk 
will produce an infinite set of eigenvalues and 
associated eigenvectors, from which solutions of 
the van der Pol equation may be extracted. The 
first eigenvalues are 

and 
A(J) = 1. 0381 

A(J) = 1. 1502 

(5. 41) 

(5. 42) 

for a = O. 5 and a = 1, respectively. From these 
we determine 

and 
aP l = 0.019 

aP l = 0.072. 

(5.43) 

(5.44) 

Hence, by applying (5.34), the perturbed angular 
frequencies become 

w = O. 981, 
and 

w = O. 928, 

a = 0.5 

a = 1. 

(5.45) 

(5.46) 

The desired solution can be expressed in the form 

(5.47) 

a-1.0 

Numerical method Matrix method 

u(t) u'(t) u(t) u'(I) 

0.0 2.00 O. 00 2.00 0.00 
0.1 1. 99 - 0.17 2.00 - O. 08 
O. 2 1. 97 - O. 30 1. 98 - 0.15 
O. 3 1. 93 - 0.40 1. 97 - O. 23 
0.4 1. 89 - O. 47 1. 94 - O. 31 

O. 5 1. 84 - O. 53 1. 90 - O. 38 
O. 6 1. 78 - O. 59 1. 86 - 0.46 
O. 7 1.72 - O. 64 1. 81 - O. 53 
O. 8 1. 65 - O. 68 1. 76 - O. 61 
O. 9 1. 58 - O. 73 1. 69 - O. 70 

1.0 1. 51 - O. 78 1. 62 - O. 79 
1.1 1. 43 - O. 83 1. 53 - O. 88 
1.2 1. 34 - O. 89 1. 44 - O. 99 
1.3 1. 25 - O. 96 1. 33 - 1. 10 
1.4 1. 15 - 1. 04 1. 22 - 1. 23 

1.~ 1. 04 - 1. 12 1. 09 - 1. 36 
1.6 O. 92 - 1. 23 O. 95 - 1. 49 
1.7 O. 80 - 1. 35 O. 79 - 1. 63 
1.8 O. 65 - 1. 49 O. 62 - 1. 77 
1.9 O. 50 - 1. 65 0.44 - 1. 90 

2.0 O. 32 - 1. 83 O. 24 - 2.01 
2.1 0.13 - 2.04 0.04 - 2. 11 
2.2 - O. 08 - 2. 25 - 0.18 - 2.18 
2.3 - O. 32 - 2.46 - O. 40 - 2.21 
2. 4 - O. 58 - 2. 62 - O. 62 - 2. 21 

2.5 - O. 84 - 2. 68 - O. 84 - 2. 17 
2.6 -1.11 - 2. 59 - 1. 05 - 2.08 
2.7 - 1. 35 - 2.34 - 1. 25 - 1. 95 
2.8 - 1. 57 - 1. 95 - 1. 44 - 1. 76 
2. 9 - L 74 ~ 1. 48 - 1. 61 - 1. 54 

3.0 - 1. 87 - 1. 02 - 1. 75 - 1. 27 
3. 1 - 1. 95 - O. 62 - 1. 86 - O. 97 
3. 2 - 1. 99 - O. 29 - 1. 94 - O. 65 
3.3 - 2.00 - O. 04 - 1. 99 - 0.30 
3.4 - 2.00 O. 14 - 2.00 0.05 
3.5 - 1. 98 O. 28 

where the C k have been determined along with the 
eigenvalues, and D and e designate constants to be 
evaluated from the initial conditions (5.31) and the 
additional boundary condition 

U(1T/W) = - 2. (5.48) 

This condition, consistent with stability require­
ments, is necessary for the complete formulation 
of a two-point boundary-value problem. The solu­
tions corresponding to a = O. 5 and a = 1 are 
given by 

u(t) ~ O. 2083 + 1. 9837 coswt 

- O. 2083 cos2wt + O. 0163 cos3wt (5.49) 

and 

u(t) ~ 0.4011 + 1. 9367 coswt 

- O. 4011 cos2wt + 0.0633 cos3wt. (5.50) 

These solutions provide values of u(t) and u'(t) 
which are at least as good as those obtained 
through the use of time-consuming numerical 
techniques. lo The comparison is presented for half 
a period in Table TIl; by periodic extension the 
entire solution can be constructed. 

It should be noted that the results for the matrix 
method were calculated from a first-order per-
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turbation, whereas for the standard method the 
second-order perturbation must be included before 
a change in angular frequency is detected. 

6. FINAL REMARKS 

For applications where the nonlinear term is no 
larger than the linear terms (QI ;2 1), first-order 
corrections obtained by the present method are 
probably sufficient. However, when the perturbing 
term becomes larger (QI > 1), higher-order correc­
tions to the unperturbed solution may be necessary 
in the interests of accuracy. A second-order per­
turbation will appear in the form of another opera­
tor added to A: 

A = B + ~(y + n), (6. 1) 

where B still designates the unperturbed linear 
operator, ~Y is the first-order nonlinear perturba­
tion of B, and ~n represents the second-order per­
turbation. Here r is assumed to be unity, since it 
plays no important part in the following discussion. 

To obtain the explicit form of the operator n from 
which its matrix elements can be calculated, it is 
desirable to reconsider the general nonlinear 
Eq. (2. 2), 

(6. 2) 

As before, the operator Z may be expanded in a 
Taylor series about QI = 0: 

(6.3) 

where again 

Z ::: ~ tJ;(k) 
1 (fI./J(k) 1 I 

... , . 
C( =0 

(6.4) 

Eq. (6. 2) will then take the form 

[B + ~(Y + QlZ 1 + Ql2Z 2 + ... ) - A(k)]tJ;(k) = 0 

(6.5) 

or, retaining both Y and the new term aZ l' 

(6.6) 

so that n = aZ1 • 

Assuming the first-order perturbation problem to 
be solved, 1/I\k) will be known; hence, Z 1 will also be 
known and we write 

n = ~ y~k)cp(l) ~ I ' 
l1k atJ;(k) ct=O 

(6. 7) 

(k) (k) 
where ')II represents the vector components of 11; 
(normalized in such a way that ')I~k) == 1), and use of 
the expansion 

tJ;(k) = cp(k) + QltJ;~k) 

= cp (k) + ~ y~k)cp (I) 

/fk 
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(6.8) 

for the first-order terms is implied. A matrix re­
presentation for n can now be obtained in much the 
same way as that for Y, and A expressed as 

(6.9) 

There is, of course, one form of Z which Simplifies 
the computations required to obtain the matrix ele­
ments of n. This occurs when Z = V(q)tJ;(k), so that 

n = :6 y(/,W(q)cp(l); 
It-k I 

in particular, 

nu = 0, 

nJ1 = y}ll/J2. j =t 1, 

(6.10) 

(6. 11) 

Some of the matrix elements of n for the nonlinear 
Legendre-like equation discussed in Sec. 3 are dis­
played below; for the case when QI = 1: 

[
0 0 0 "'J n ::: 0 - 0.0592 0 .. . 

0.0264 .~. - 0.0303 ... . 
(6. 12) 

This leads to a first eigenvalue of 

A1 = - O. 2579 

and a first eigenfunction 

compared with 

A1 =-0.2495 

and 
u 1(x) = v 1 (x) + 0.0373 v3(x) 

for a first-order perturbation and 3 x 3 matrix 
representation. Substituting these values into 
Eq. (3. 1) gives 

Ixl ~ 1 
and 

I!i. (1 - x2) du 1 + A 1u 1 + x 2uj I ~ O. 018, 
dx dx 

Ixl ~ 1 

for first-order and second-order perturbations, 
respectively. 

Following similar procedures, one can in principle 
obtain more and more accurate results by defining 
third-, fourth-, and higher-order perturbations. In 
practice, however, calculating the matrix elements 
in such cases may well take too long to be feaSible. 

It was shown in Sec. 5 that there are certain dif­
ferential equations for which the algebraic tech-
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nique of computing matrix elements is not parti­
cularly convenient. In these cases the usual inte­
gral method was applied. To understand the latter 
approach and its relation to the former, consider 
again the nonlinear Eq. (2. 1), 

(L + QN + X)u = O. 

Assuming that u = u(x) is also a continuous func­
tion of a, the Taylor expansion about a = 0 may be 
formed, 

(6. 13) 

where u o represents the unperturbed solution and 
aT 1 is the first-order perturbation. Thus it fol­
lows that 

aN N(x, u, ... ) = NO + a - Tl + ... , 
au 

(6. 14) 

defining NO = N(x, u 0' ... ). Substituting and retain­
ing only the linear terms in a then reduces the 
basic equation to 

(L + aNo + X)u = O. (6. 15) 

Suppose that when a = 0 this equation has the 
eigenvalues and normalized eigenfunctions 

(6. 16) 

(6. 17) 

Expanding the perturbed eigenfunctions u(x) in 
terms of the unperturbed eigenfunctions vk(x) yields 

u = 6 ckVk ' 
k 

and substitution into (6. 15) gives 

6 (L + aNO + X)CkVk = O. 
k 

(6.18) 

(6. 19) 

Multiplying (6. 19) by Vj and forming an inner pro­
duct over the fundamental domain we get 

or 
(6. 20) 

(6. 21) 

• Based on a Ph.D. thesis submitted to the Department of 
Metallurgy, Mechanics, and Materials Science at Michigan 
State University by L. e. Andrews. 

1 T. L. Saaty and J. Bram ,NUlllillcllr MlllileJi/lltics (McGraw­
Hill, New York, 1964) 

2 W. Heisenberg,IlIlrodllclioll 10 lile Vilified Field Tileory of 
EleJi/elllar.\' Particles (lnterscience, New York, 1966). 

3 L.de Broglie,IlIlrodllctioll Iu 111(' Vigi!!r Tileo}'.\' UJ EleJi/cnl­
or.\' Pllrlicles, translated by A. J. Knodel (Elsevier, New York, 
1963). 

where 

Ljk = (vj , LV,) 

and 
~~ = (vj , NOvk)· 

However, L has the diagonal repre sentation 

so that (6. 21) can be written 

It (bj OJ k- aNj~)Ck = XCj , 

(6. 22) 

(6. 23) 

(6.24) 

(6. 25) 

and completing the diagonalization of the matrix 
Ajk = bAk - ~~ will yield the perturbed eigen­
values X. The matrix A referred to here is the 
same as that utilized for the development of the 
algebraic method. It is the form of the differential 
equation that will generally determine which 
method should be adopted for the computation of the 
matrix elements. 

A comparison with standard perturbation theory 
can easily be made at this point. If, instead of mul­
tiplying (6.19) by VI' one multiplies by vk and forms 
the inner product, \ 6.20) will become 

or 

6 [(v k, Lvk) + a (vk,Nov k ) + x]ck= 0 
k 

o 
X = b k - aN kk , 

(6. 26) 

(6. 27) 

(6.28) 

which clearly defines the perturbed eigenvalues as 
the diagonal elements of the matrix A. 
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Errata: On Green's Functions to the Bethe-Salpeter Equation 
[J.Math.Phys.ll,715 (1970)] 

Justin C. Huang and Brian De Facio 
Department oj Physics, Uni/'ersity oj Missouri-Coillmhia, Columbia, Missouri 65201 

(Received 8 September 1971) 

Figures 1 and 4 are reversed; however, the equations 
in the text describing choices of poles are all correct 
and explain which poles and contours were used in the 
analysis. 

Equation (3. 12) on page 717 should read as 

N(R ±T) = Jm k exp[± i(m2 - k2)1I2T] dk. 
, 0 k2 + q2 

(3. 12) 
Figure 6 is incorrect for the contour used for the inte­
gral L (-, +) and should close over the upper half­
plane and enclose the top half of the branch cut and 
the branch point at k = im. 

The conclusions of the paper remain unaltered after 
the above corrections. 
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